

INTEGRATED SYSTEMS DESIGN AND DYNAMICS 2023-24 STUDY GUIDE

About this degree option

The Integrated Systems Design and Dynamics graduate degree provides students with a senior level systems-based STEM education. The graduate degree is focused on the planning, architecture, design, and development of highly integrated systems. Students will learn how to design and develop technological complex systems using various modeling and simulation techniques. Students will be immersed in the fundamental theories of systems science and the application of those theories leading to the operationalization of complex systems across multiple domains.

Why this degree options?

K-State Salina offers a variety of advantages, including:

- Gain skills needed to think and work systematically when approaching industry problems.
- Understand complex technological systems.
- Focus on planning, designing and developing integrated machine learning systems, autonomous systems, aerospace systems and cyber systems.

Careers

Career options for Master of Science in Integrated Systems Design and Dynamics graduates include, but are not limited to:

- Senior Systems Engineer
- Manager of Information Technology
- Senior Machine Learning Engineer
- Systems Manager
- Director of Engineering
- Smart Materials and Manufacturing Engineer

Accreditation

We take our reputation seriously. Accreditation validates the quality of an institution as a whole, offering evaluated measurements of everything from academic offerings, governance, administration, mission, finances and resources. Kansas State University has been continuously accredited by the Higher Learning Commission (HLC) since 1916.
k-state.edu/assessment/accreditation

Master of Science

32 credit hours required

Degree Requirements:

COT 839	Integrated System Thesis**	6
CYBR 601	Introduction to Cybernetic	
	Modeling \& Simulation	3
CYBR 603	Integrated Systems Architecture	3
CYBR 707	Methods, Design \& Analysis	5
CYBR 708	Cybernetic Systems Design \&	
	Dynamics	3
	Focus Area Elective	12

**Once started, thesis courses must be taken in a connected sequence until completion
Thesis must be broken up into one of two options:

- 2×3 - 2 courses, 3 credit hours each course
- 3×2 - $\mathbf{3}$ courses, 2 credit hours each course

Electives (Choose a Focus Area):

Aerospace Systems:

AVT 790 Aerospace Topics 3
COT $734 \quad$ Aircraft Production Certification 3
COT $741 \quad \begin{array}{ll}\text { Aerospace Manufacturing } \\ \text { and Materials }\end{array}$
$\begin{array}{ll}\text { COT } 744 & \begin{array}{l}\text { Aviation Human Factors } \\ \text { Analysis and Design }\end{array}\end{array}$

Total 12

Machine Learning \& Autonomous Systems:

MLAS 650 Autonomous Systems Studio 3

MLAS 700 Advanced Cybernetic Systems 3
$\begin{array}{ll}\text { MLAS } 750 & \begin{array}{l}\text { Autonomous Networking within } \\ \text { Cyber-Physical Systems }\end{array}\end{array}$
$\begin{array}{lll}\text { MLAS } 800 & \text { Integrated Machine Learning \& } \\ & \text { Autonomous Systems }\end{array}$
$\begin{array}{ll}\text { Autonomous Systems } & \frac{3}{12}\end{array}$
Aerospace Materials:
COT $741 \quad \begin{array}{ll}\text { Aerospace Manufacturing \& } \\ & \text { Materials }\end{array}$
$\begin{array}{ll}\text { SSO } 735 & \text { Electron Microscopy of } \\ & \text { Aerospace Materials }\end{array}$
SSO 736 Aerospace Metallurgy and Ceramics 3
SSO 738 Advanced Composite Materials 3
Total 12
Systems Management:
$\begin{array}{ll}\text { COT } 706 & \text { Informatics \& Technology } \\ & \text { Management }\end{array}$
COT 715 Systems Project Management 3
COT 720 Application of Lean Six Sigma 3
CYBR $710 \quad$ Advanced Data Analytics for
Total 12
Aerospace Cyber Defense:
COT $682 \quad$ Open Source Cyber Surveillance 3
COT 684 Adv Topics in Cyber Data Fusion 3
COT 760 Aerospace Cybersecurity Studio 3
COT 751 Cyber Defense Methods 3
Total 12

