VOX AUDIO FILE CONVERSION

The programs vox and devox are C programs developed in 1997 when | worked at Sprint to
convert audio files between OKI ADPCM (Dialogic vox) file format and linear audio files,
which work with PC audio hardware. Conversions to/from other formats can be
accomplished with sox.

No current development work is going on with the vox program. It is believed to do its
intended job, and | am longer work in the voice processing industry.

Vox works on all known versions of Unix, including Linux.

THE STANDARD

| originally wrote the program based on a description of the algorithm found in the book
PC Telephony - The complete guide to designing, building and programming systems using
Dialogic and Related Hardware by Bob Edgar, pg 272-276, third edition, 1995, Flatiron
Publishing, Inc., New York. Relavent pages are shown here (scanned). | think the book is
out of print, so hopefully listing a few pages from the book is okay.

Digital Audio 273

the magnitude does not necessarily double the amplitude of the
encoded sound,

The ADPCM encoding algomithm works with three input values:
two signed twelve-bit amplitude samples Sn, the curremt sample
and Sn-1, the previous sample; and the cumrent step size 55, The
procedure is as follows:

Diglogic Standard ADPCM

The digitization method originafly used by Dralogic is a 4-bit

ADPCM wvariant at & rate of 6053 sampleg/second | The “4-bit”
designation teans that each sample is represented by a 4-bit value.
Oider Dialogic lHerature sometimes referred to ADPCM files as
VOX fHes {vox iy the Latin for "veice"), and used the DOS file
extension .VOX for files stored in this format, Dialogic dedved
their standard from the pre-existing O%F ADPOM standard, so yon
saay sometimes see this Format referred to as Oki or Oki ADPCM.

The first of the Tour bits is the sigw, in other words whether the
current sample is preater or less than the previcus sample. I the
current sample is greatey, the sign 18 zero i the current sample is
tess, the sign s one. The remaining three bits represent a value
between zero and seven which represent the approximate magnitude
of the difference between the sampies. The representation of the
magnitude is non-fnear, which means tha doubling e valie in

(Edgar, P272)

1. Set these values to zero: BO, B1, B2, B2

2. Calculate the difference, Dn = Sn - Sn-1, If D is less than
zero, st B3 o 1.

3. 5¢1 E 1o be the absolute value of Din, je. if Din is greater than
zero, set E to Dm; if Dm 15 less than zero, set E to -Dn.

4, If E == 85, set B2 to | and subtract 55 from E.
5. If E »= 55/2, set Bl to 1, and subtract 58/2 from E,
6. If E >= S8/, et B0 w1,

After following these steps, the 4-bit ADPCM sample i the four
bits:
B3 B2 Bl BO

The step size is re-calculated each time using the previous step size
and the current 3-bit ADPCM magnitude Mn

The step size 55 can take one of 49 different values from the
following table:
(Edgar, P273)

http://sox.sourceforge.net/

74 Digital Audio

Nr 88
16
17
1%
21
23
15
25
3l
34

-l W f bl —

=
L]
-1

11 41
12 45

Nr 538
13 50
14 55
15 60
16 66
1773
18 80
19 88
097
1
12 118
23 13
4 143

Nr 58

26 173

Nr 5§

37 404
38 Sd4
39 59E
40 658
41 T34
42 To6
43 876
44 9R3
45 1060
46 1166
47 1282
48 1408
49 1552

Mote that & signed twelve bit sample ranges m value from -2048 1o
2047, o the maximuim step skze of 1552 can take a sample from
minirmm to maximum in three steps. To calculate the step size,
use the curent 3-hit magnitude Mn from the current ADPCM
sample and find X from the following table:

Mn
000
ool
o1
ol
100
101
1o
111

X

e o B o

Use the value to adjust the cusrent position of the step size in the
table. For example, if the current step size is number 24, with step
size 143, and Mn is 100, giving 2 change of 2, the new siep size

(Edgar, P274)

276 Digital Audio

Digital Andic 275

will be mumber 26, . 173, If this would change the siep size o
less than number 16, use 16; if this wouold change the step size o
preater than number 49, use 4%,

Thiz procedurs may seem strange, but it was developed by
extensive analysis of speech: the algorthm i3 effective for Soring
the human voice.

Tos decode an ADPOM valse, the above procedure (s reversed. The
step size is adjusted from sample to sample in exactly the same
way us for encoding, To decode, start by calculaning the amplinude
of the difference Mo

Mn = B2=558 + B1%552) + BO#(85/4) + 55/4%
If B3 is 0, set Dn = Mn
If B3 is 1, s=t Dm = -Mn

Then the mew owtpot 12-bit linear sample 3n is calculated from the
PrEVInus:

Sn=5n1+Dn

To initialize, the sample before the first paelve-bit sample s
congidersd o be gero (a the middle of the scale), and the siep size
I3 szt to the minimum value of 16 {nomber | in the able).

Af important feawre, and sometimes drawback, of ADPCM
encoding methods is that they are context-dependenr — in other
words, the interpretation of a given sel of samples depends on the
samples which precedes that set. This means that you cannot
simply "cut and paste” fragments of an ADPCM file withear
adjusting samples to accommodate the current context.

(Edgar, P275)

The 4-bit ADPCM algorithm can be "reset” to its initial state by a
sequence of 48 samples of plus and minus zero (0000, 1000) in
either order.

(Edgar, P276)

Since developing the program, | found that Dialogic published a standard for the ADPCM
algorithm on it's web page. | don’t know if they still post the standard.

Disclaimer: (dated 6/26/2003) A few people have pointed out to me that there is a minor
difference between my program and the Dialogic standard. The difference relates to how
the step size is calculated. The difference is also reflected in Edgar’s text, which my code is
based on. | don’t how or why the difference arouse. | have a few comments about said

difference:

1. lwrote the program to a published algorithm available to me at the time.

2. I might be able work on a new version of the program which will match the
Dialogic standard; however, since | am not in the voice processing industry, | don't
have any hardware to use to test the new code. If you have some hardware and are
willing to help with testing, let me know. | don’t get the impression that there is
much demand for a new version of it.

3. The differences seem to be fairly minor. If you just want to be able to do simple
conversions for listening purposes, my code, as it is now, will work for you. If you
require exact conversion, then my code may not be what you want.

https://www.dialogic.com/

READ ME DOCUMENTATION

vox and devox:
This package is for conversions between Oki ADPCM and linear voice

files. (see the man page)

The makefile is for gcc. If you have another compiler, change the
makefile. Also note the INSTALLDIR if you want make to also install

the binaries and man pages.

To just build:
make all
To build and -install:

make install
Other recommended utilities:

sox (general purpose voice file format conversion)

Generic source:ftp.cwi.nl, 1in directory /pub/audio/sox<version>.tar.Z.
You may be able to locate a nearer version.

Linux users look 1in: sunsite.unc.edu /pub/Linux/apps/sound/convert/

mxv (waveform viewer/editor) ftp.ccmrc.ucsb.edu/pub/MixViews
MAKEFILE CODE

OBJ=vox.o adpcm.o
DOBJ=devox.o adpcm.o
CC=gcc

CFLAGS=
INSTALLDIR=/usr/local

all: devox vox

install: all
cp vox $(INSTALLDIR)/bdin
cp devox $(INSTALLDIR)/bin

cp vox.l $(INSTALLDIR)/man/manl

1n -s $(INSTALLDIR)/man/manl/vox.1l $(INSTALLDIR)/man/manl/devox.1

devox: ${DOBJ}
$(CC) -o $@ ${DOBJ}

vox: ${O0BJ}
$(CC) -o $@ ${0BJ}

Vox.o0:vox.c adpcm.h
$(CC) $(CFLAGS) -c vox.c

devox.o:devox.c adpcm.h
$(CC) S$S(CFLAGS) -c devox.c

adpcm.o:adpcm.c adpcm.h
$(CC) $(CFLAGS) -c adpcm.c

VOX.1 CODE

.de Sh

.br

.ne 5

.PP
\fB\\$1\fR
.PP

.de Sp

df t .sp .5v
.if n .sp

.TH VOX 1

.SH NAME

vox, devox - programs to convert voice files between linear and Oki
(Dialogic)

ADPCM format.

.SH SYNOPSIS

.B vox [-b 8 | -b 16] \fIinfile outfile \fB

.br

.B devox [-b 8 | -b 16] \fIinfile outfile \fB
.br
.SH DESCRIPTION
.I vox
translates sound files from linear (8 or 16 bit) to Oki ADPCM format.
.I devox
translates sound files from Oki ADPCM to linear (8 or 16 bit) format.
The 0Oki ADPCM format is commonly found on platforms using voice
processing hardware from Dialogic for computer telephony applications.
The default Dialogic file s
titled with a '.vox' suffix and is sampled at 6022 samples per
second -- thus considered a 24 Kbit/sec coder. Sampling at 8000
samples per second is also popular in the computer telephony world.
.SH OPTIONS
The option syntax 1is pretty simple
.br

vox file.8bit file.32K
.br
translates a sound sample in 8 bit linear file
into Oki ADPCM format, while
.br

devox file.32K file.8bit
.br
does the reverse.
.PP
Linear File options:
.TP 10
.B -b 8
(Default) The linear file is in 8 bit (unsigned byte) format.
The option is not needed since it is the default.
.TP 10
.B -b 16
The linear file 1is 1in 16 bit (signed word) format.
.SH FILE TYPES
.I vox
and
.I devox
only support raw (no header) binary files. The
ADPCM f1iles are compatible with Dialogic's so-called vox files.

They contain two 4 bit samples stored in one unsigned char.

The sampling rate does not matter to these programs (may be
6 or 8 kHz). The linear files are either in 8 bit linear (not mu-law)
or 16 bit linear format.
.SH BUGS
Only supports raw files. Use the sox program to convert the linear
files to/from other file formats.
.SH AUTHOR
Tim Bower, tim@cis.ksu.edu
.SH NOTICES
Permission to use, copy, modify, and distribute this software and -its
documentation for any purpose and without fee is hereby granted.

This software 1is provided "as 1is" without express or +implied warranty.
VOX.C CODE

/* Filename: vox.c
Description: Kind of like the sox program. It converts voice

file formats. Converts 16 bit and 8 bit raw voice files to
the Dialogic or Oki ADPCM (foo.vox or foo.32K) file format.
Of course, the files have to sampled at the right amount for
them to work with Dialogic hardware.
Files sampled at 8-kHz are converted to the 32K.
Files sampled at 6053 Hz are converted to the 24K -- normal

vox format.
Usage: vox [-b 8|-b 16] infile outfile

The -b 1is for 8 or 16 bit files (reference to 1input files)
Default 1is 8 bits.

*/

#include <unistd.h> /* needed for getopt x/
#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include "adpcm.h"

int readl2(int, int, short *, int); /* program to read and convert
* data to 12 bit format.

*/
int main (int argc, char *xxargv)
{
int ¢, i, j;
extern char *optarg;
extern int optind;
int infile, outfile, n;
int buffer_size, sample_size;
short xbufferi2;
char xadpcm;
struct adpcm_status coder_stat;
] *
* Process the arguments.
*/
sample_size = 1; /* default to 8 bit x/
while ((c = getopt(argc, argv, "b:")) I= -1) {
switch (c) {
case 'b':
] *

* set bits per sample to 8 or 16 - sample_size to
* 1 or 2 bytes.

x/

switch (atoi(optarg)) {

case 8:

sample_size 1;
break;

case 16:

1
N
e

sample_size
break;
default:
fprintf(stderr, "Wrong bit specification, 8 bit/sample
used.\n");
sample_size = 1;

break;

break;
default:
/*
* set bits per sample to 8 - sample_size to 1 byte.
*/
sample_size = 1;

break;

/*
* Process extra arguments. (infile outfile)
*/
if (argc - optind != 2) {
fprintf(stderr, "%s: USAGE: vox [-b 8|-b 16] infile outfile\n",

argv[o]);
exit(1l);
}
/*
* Open the input file for reading.
x/

if ((infile = open(argv[optind], O_RDONLY)) < 0) {
perror(argvoptind]);

exit(l);
}
/*
* Open the output file for writing.
*/

if ((outfile = open(argv[++optind], O_WRONLY | O_CREAT, 0666)) < 0) {
perror(argv[optind]);
exit(1);

/*
* Read the 1input file and convert the samples to 12 bit --
* which is not support by Sound Blaster hardware, but is needed

* to accurately implement the Dialogic ADPCM algorithm.
*/

/*
* Allocate memory for the buffer of 12 bit data.
*/
buffer_size = 1024;
bufferi2=(short*x) calloc (buffer_size,sizeof(short));
/* Check that memory was allocated correctly x*/
if (buffer12==NULL) {
fprintf (stderr,"%s: Malloc Error'",argv[0]);

exit(1);
}
/*
* Initialize the coder.
*/
adpcm_init(&coder_stat);
/*
* Allocate memory for the buffer of ADPCM samples.
*/

adpcm=(charx) calloc (buffer_size/2,sizeof(unsigned char));
/* Check that memory was allocated correctly */
if (adpcm==NULL) {
fprintf (stderr,"%s: Malloc Error",argv[0]);
exit(l);
}
/*
* Need different read commands for 8 bit and 16 bit data.

* Read the data; continue until end of file

*/

while ((n=readl2(infile, sample_size, bufferl2, buffer_size))>0) {

/*

* Convert data to Dialogic ADPCM format

* Note that two ADPCM samples are stored in (8 bit) char,

* because the ADPCM samples are only 4 bits.

*/

j=0;

for(i=0; i<n/2; i++) {
adpcm[i] = adpcm_encode(bufferi2[j++], &coder_stat)<<4;
if(j > n) /x only true for last sample when n is odd x/

adpcm[i] |= adpcm_encode(0, &coder_stat);

else

adpcm[i] |= adpcm_encode(buffer12[j++], &coder_stat);

}

] *

* now write the output file.
x/

n /= 2;

if(write(outfile, adpcm, n*sizeof(unsigned char)) < 0) {

fprintf (stderr,"Error 1in writing file.");

exit(1l);
}
}
/*
* free allocated memory
*/

free(bufferl2);
free(adpcm);

/*

* Close the 1input and output files
*/

close(infile);

close(outfile);

exit(0);
}
] *
* program to read and convert data to 12 bit format.
*/

int read12(int 1infile,int sample_size, short xbufferl12,int buffer_size)
{

int i, n;

short j, sign;

unsigned char xbuffer8;

/*
* The 8 bit case first.
* The second bit of sample_size indicates whether 8 or 16 bit, hence

the

* bitwise operation 1in the condition.

x/
if (! (sample_size>>1)) {
/*
* Allocate memory for the buffer.
*/
buffer8=(unsigned charx) calloc (buffer_size,sizeof(unsigned
char));

/* Check that memory was allocated correctly */
if (buffer8==NULL) {
fprintf (stderr,"Malloc Error");

exit(1);

}

/*

* Read the next block of data;

*/

if ((n=read(infile,buffer8,buffer_size*xsizeof(unsigned char)))<o)

{

fprintf (stderr,"Error 1in reading file.");
exit(1);

}

/*

* Convert the 8 bit samples to 12 bit
* Need subtract 128 first because it is a unsigned char.
*/
for (i=0; i<n; i++) {
buffer12[i] = (short)buffer8[i] - 128;
bufferl2[i] *= 16;
}
free(buffer8);

}
else { /* now read the 16 bit data x*/
/*
* Read the next block of data;
* Can use the 12-bit buffer to read the 16 bit data.
*/
if ((n=read(infile,bufferl2,buffer_sizexsizeof(short)))<o) {
fprintf (stderr,"Error in reading file.");
exit(1);

}

retu

}
/*

* Convert the 16 bit samples to 12 bit.

* Note that n is the number of bytes read, which is twice

* the number samples read because sizeof(short) == 2.
*/
n /= 2;

for (i=0; i<nj; i++) {

buffer12[i] /= 16;

rn(n);

DEVOX.C CODE

/* Filename: devox.c

Description:

Kind of like the program sox. It converts voice

file formats. Converts

the Dialogic or Oki

to 16 bit and 8 bit

Usage: devox [-b 8|-b 16]

*/

#include
#include
#include
#include
#include
#include
#include

#include

The -b 1is for 8 or 16

Default is 8 bits.

<unistd.h>
<string.h>
<stdlib.h>
<stdio.h>
<sys/types.h>
<sys/stat.h>
<fcntl.h>
"adpcm.h"

ADPCM (foo.vox or foo.32K) file format

raw voice files.

infile outfile

bit files (reference to 1input files)

/* needed for getopt x/

void writel2(int, 1int, short x, int); /* program to write and convert

* data to 12 bit format.
*/
int
main (int argc, char *xargv)
{
int ¢, i, j;
extern char *optarg;
extern int optind;
int infile, outfile, n;
int buffer_size, sample_size;
short *bufferi2;
char *adpcm;

struct adpcm_status coder_stat;

/*
* Process the arguments.
*/
sample_size = 1; /* default to 8 bit x/
while ((c = getopt(argc, argv, "b:")) != -1) {
switch (c) {
case 'b':
/*
* set bits per sample to 8 or 16 - sample_size to
* 1 or 2 bytes.
*/
switch (atoi(optarg)) {

case 8:

sample_size 1;
break;
case 16:

sample_size

1l
N

break;
default:
fprintf(stderr, "Wrong bit specification, 8 bit/sample
used.\n");

sample_size = 1;
break;

}

break;

default:

/*
* set bits per sample to 8 - sample_size to 1 byte.
*/

sample_size = 1;

break;
}
}
/*
* Process extra arguments. (infile outfile)
*/

if (argc - optind != 2) {
fprintf(stderr, "%s: USAGE: devox [-b 8|-b 16] infile outfile\n",
argv[o]);

exit(l);
}
/*
* Open the input file for reading.
*/

if ((infile = open(argv[optind], O_RDONLY)) < 0) {
perror(argv[optind]);

exit(l);
}
/*
* Open the output file for writing.
*/

if ((outfile = open(argv[++optind], O_WRONLY | O_CREAT, 0666)) < 0) {
perror(argv[optind]);
exit(1l);

/*

*x convert the 12 bit samples linear to the final format of either
* 8 or 16 bit and write the output file.

*/

/*

* Allocate memory for the buffer of 12 bit data.

*/

buffer_size = 1024;
bufferl2=(short*) calloc (buffer_size,sizeof(short));
/* Check that memory was allocated correctly */
if (bufferl2==NULL) {
fprintf (stderr,"%s: Malloc Error",argv[0]);

exit(l);
}
/*
* Initialize the coder.
*/
adpcm_init(&coder_stat);
/*
* Allocate memory for the buffer of ADPCM samples.
*/

adpcm=(char*) calloc (buffer_size/2,sizeof(char));
/* Check that memory was allocated correctly x/
if (adpcm==NULL) {

fprintf (stderr,"%s: Malloc Error",argv[0]);

exit(l);
}
/*
* Read the data; continue until end of file
*/
while ((n=read(infile, adpcm, buffer_sizexsizeof(char)/2))>0) {
/*
* Convert data to linear format
* Note that two ADPCM samples are stored in (8 bit) char,
* because the ADPCM samples are only 4 bits.
x/
j = 0;
for(i=0; i<n; i++) {
bufferl12[j++] = adpcm_decode((adpcm[i]>>4)&0x0f, &coder_stat
)
buffer12[j++] = adpcm_decode(adpcm[i]&0Ox0f, &coder_stat);
}
/*
* now convert from 12 bit to either 8 or 16 and write the output
file.

*/

writel2(outfile, sample_size, bufferl2, nx*2);

}

/*

* free allocated memory
*/

free(bufferli2);

free(adpcm);

] *

* Close the 1input and output files
*/

close(infile);

close(outfile);

exit(0);

/*
* program to convert data from 12 bit format and write it.

*/

void writel2(int outfile,int sample_size, short xbufferl2,int buffer_size)
{
int 1

unsigned char xbuffer8;

/*
* The 8 bit case first.
* The second bit of sample_size indicates whether 8 or 16 bit, hence
the
* bitwise operation in the condition.
*/
if (! (sample_size>>1)) {
/*
* Allocate memory for the buffer.
*/
buffer8=(unsigned charx*) calloc (buffer_size,sizeof(unsigned
char));
/* Check that memory was allocated correctly =*/
if (buffer8==NULL) {
fprintf (stderr,'"Malloc Error");
exit(l);

}

/*

* Convert the 12 bit samples to 8 bit

* Need to add 128 because it 1is a unsigned char.

*/

for (i=0; di<buffer_size; 1i++) {
//bufferi2[i] /= 16;
buffer12[i] /= 32;
buffer8[i] = (char) (bufferi12[i] + 128);

}

/*

* Write the next block of dataj;

*/

if (write(outfile,buffer8,buffer_sizexsizeof(char))<o) {
fprintf (stderr,"Error 1in writing file.");
exit(1);

}

free(buffer8);

}
else { /*x now write the 16 bit data */

/*

* Convert the 12 bit samples to 16 bit.

x/

for (i=0; +di<buffer_size; i++) {
bufferl2[i] x= 16;
// Compiler should implement at a shift left 4 bits.
// The following was a temporary work around for a
// clipping problem. —-- believed to be fixed in version
// 1.1 (see web page and adpcm.c line 99). TLB 3/30/04
//buffer12[i] *= 8;

}

/*

* write the next block of data;

* Can use the 12-bit buffer for the 16 bit data.

*/

if (write(outfile,bufferi2,buffer_sizexsizeof(short))<o) {
fprintf (stderr,"Error 1in writing file.");

exit(l);

}

return;

ADPCM.H CODE

struct adpcm_status {
short last;
short step_dindex;

}s

void adpcm_init(struct adpcm_status x);
char adpcm_encode(short, struct adpcm_status x);

short adpcm_decode(char, struct adpcm_status x);

ADPCM.C CODE

/* File: adpcm.c
Description: Routines to convert 12 bit linear samples to the
Dialogic or Oki ADPCM coding format.
I copied the algorithms out of the book "PC Telephony - The
complete guide to designing, building and programming systems
using Dialogic and Related Hardware" by Bob Edgar. pg 272-276.

*/
1dinclude "adpcm.h"

/* Note: Edgar's book says that the second to last value is 1408; however,
* The standard says 1t 1is 1411.

* Changed on 1/17/2003.

*/

static short step_size[49] = { 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41,
45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173,
190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552 };

/*

* one function local to this file only.

*/

short step_adjust (char);

/*

* Initialze the data used by the coder.

*/

void adpcm_init(struct adpcm_status *stat) {
stat->last = 0;

stat->step_index = 0;

return;
}
/*
* Encode linear to ADPCM
*/

char adpcm_encode(short samp, struct adpcm_status xstat) {
short code;
short diff, E, SS;

/* printf("%d\t", samp);
*/
SS = step_size[stat->step_index];
code = 0x00;
if((diff = samp - stat->last) < 0)
code = 0x08;
E = diff <0 ? -diff : diff;
if(E >= SS) {
code = code | 0Ox04;
E -= SS;

if(E >= SS/2) {
code = code | 0x02;
E -= SS/2;

if(E >= SS/4) {
code = code | 0x01;

/* stat->step_index += step_adjust(code);
if(stat->step_index < 0) stat->step_index = 0;
if(stat->step_index > 48) stat->step_index = 48;
x/

/*

* Use the decoder to set the estimate of last sample.
* It also will adjust the step_index for us.

*/

stat->last = adpcm_decode(code, stat);

return(code);

/*

* Decode Linear to ADPCM

*/

short adpcm_decode(char code, struct adpcm_status xstat) {
short diff, E, SS, samp;

/* printf("%x\t", code);

*/
SS = step_size[stat->step_index];
E = SS/8;
if (code & 0x01)
E += SS/4;
if (code & 0x02)
E += SS/2;
if (code & 0x04)
E += SS;

diff = (code & 0Ox08) ? -E : E;
samp = stat->last + diff;

* Clip the values to +(27211)-1 to -2711. (12 bits 2's

* compelement)

* Note: previous version errantly clipped at +2048, which could
* cause a 2's complement overflow and was likely the source of
* clipping problems in the previous version. Thanks to Frank

* van Dijk for the correction. TLB 3/30/04

x/
if(samp > 2047)
{

samp = 2047;
}
if(samp < -2048)
{

samp = -2048;

stat->last = samp;

stat->step_index += step_adjust(code);

if(stat->step_index < 0) stat->step_index = 0;
if(stat->step_index > 48) stat->step_index = 48;

/* printf("%d\n", samp);
*/

return(samp);

/*
* adjust the step for use on the next sample.
x/
short step_adjust (char code) {
switch(code & 0x07) {
case 0x00:
return(-1);
break;
case 0Ox01:
return(-1);
break;
case 0x02:
return(-1);
break;
case 0x03:
return(-1);
break;
case 0x04:
return(2);
break;
case 0x05:
return(4);
break;
case 0x06:
return(e);
break;
case 0Ox07:
return(8);
break;

