Asphalt Paving Inspection Workbook

Certified Inspector Training Program

TABLE OF CONTENTS

- Introduction
- Plant
- Paving
- Surface Treatments
- Paving Alternatives

Asphalt Paving Inspection

Part 1 – Introduction

Mitchel Johnson – CE Hays Construction Cale Brown – EA Hays Construction

1

What's this about...

Goals

- General knowledge of asphalt paving
- Where to locate related specifications

Topics in this course

- Plans and specification navigation
- HMA
 - Plant and Paving Operations
- Surface treatments
- Recycling options
- Tips & Tricks Helpful Information

Specification Resources

- Standard Specifications & Special Provisions
 - Division 100 General Clauses & Covenants
 - Division 150 Equipment
 - Division 600 Flexible Pavement
- Construction Manual Part V (Materials)
 - KT Methods, Testing Procedures, Sampling, etc...

3

Hierarchy of Information

- Information received pre-bid
 - Addendums, Bid Express
- Project Special Provisions (PS) & Modified Requirements (MR)
 - Applicable list included in proposal/contract
 - · Accessible through ksdot.org
- Special Provisions/Errata
- Plans
- Standard Specifications/Construction Manual

Example Project

Pre-Bid Information

- Addendums
 - Issued by KDOT
 - · Correcting errors or omissions
- Bid Express
 - Online question submission
 - Issued as part of the contract

```
Proposal: 521062383 Prolect NM: KA 2372-03
Question: 1 Subject: RAP Sample
Where is the RAP sample?

Answer:
A RAP sample was not obtained for this project. If a bidder wishes to perform exploratory work on the pavement, they should coordinate with the Phillipsburg Area Office.

Proposal: 521062383 Project NM: KA 2372-03
Question: 2 Subject: Removals to the executation quantity that is required to complete the removal of the RCBs included in the common excavation plan quantity?

Answer:
The excavation required for RCB removal and construction is not included in the common excavation quantities and will not be measured for payment per 204 4b (2):
```

(Project) Special Provisions

- Project Special Provisions
 - Apply specifically to an individual project.
- Special Provisions/Errata
 - Overall provisions to the Standard Specifications
 - Errata are revisions usually for printing or writing

5

Example Project Cont. – Special Provisions


```
ANALYSI ESPANTIANON OF TRANSPORTATION PAGE 3
STATE PROJECT NO ISSUES HAT STATE OF TRANSPORTATION PAGE 3
STATE OF TRANSPORTATION OF TRANSPO
```

15-26001-R08 MATERIALS CERTIFICATIONS

15-MR0440-R1 MODIFIED REQUIREMENTS – ASPHALT MIXTURES

15-WS0167 WORK SCHEDULE

END OF SPECIAL PROVISION LIST

Example Project Cont. – Modified Req. (1)

Modified Requirements

- Included in the contract
- Required and included on all HMA projects under Section 602
 - Individual project mix design requirements
- Specific Mix Requirements
 - · Air Voids, Compaction, RAP, Binder
- Multi-action projects

KANSAS DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION TO THE STANDARD SPECIFICATIONS, EDITION 2015

SECTION 602

MODIFIED REQUIREMENTS - ASPHALT MIXTURES

383-74 KA-2372-03

Page 600-7, TABLE 602-1, delete note 4 and replace with the following: 4. The target air voids (V_a) for any mix designation shall be 3.0% at N_{des} gyr

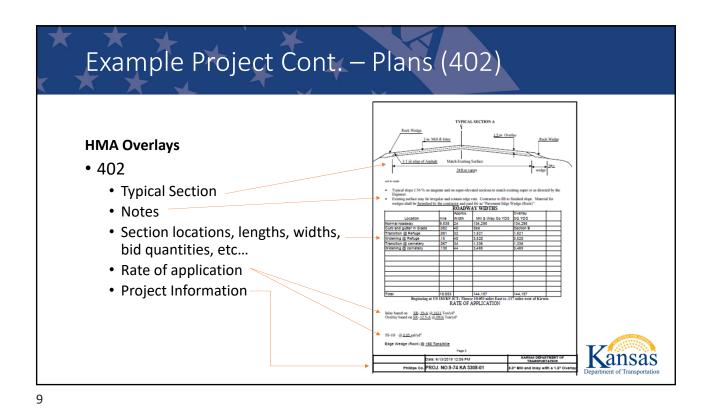
Page 600-7, TABLE 602-1, delete note 6 and replace with the following:

6. The level of compaction of the mix when compacted to $N_{\rm ex}$ gryations shall be less than the percent of the $G_{\rm ext}$ shown in the Contract Special Provision, and when compacted to $N_{\rm ext}$ gryations shall be a maximum of 98.5% of

7

Example Project Cont. – Modified Req. (2)

TABLE 1: PROJECT MIX REQUIREMENTS


MIX CRITERIA	SR-12.5A (PG70-28) ⁽²⁾ SR-19A (PG70-28) ⁽³⁾	SR-19A (PG64-22) ⁽⁴⁾		PG58-28)sh ⁽⁵⁾ PG64-22)sh ⁽⁶⁾
AGGREGATE:				
Coarse Angularity (min.%)	75	50		50
Uncompacted Voids-Fine (min. %)	42 for SR-12.5A 45 for SR-19A	42	40	
Sand Equivalent (min. %)	40	40	40	
Reclaimed Asphalt Pavement (RAP) (max. %)	25	25	30 for SR-12.5A 40 for SR-19A	
COMPACTION REVOLUTIONS	:		$(A)^{(1)}$	(B) ⁽¹⁾
N _{ini} (level of compaction)	7 (≤91.5)	7 (≤91.5)	6 (≤91.5)	7 (≤92.0)
N _{des}	75	75	50	75
N_{max}	115	115	75	115
MIX:				
VFA	65 - 82	65 - 82	66 - 82	65 - 82

At the Contractor's option, Column (A) or (B) may be used

(2) Between 0 and 25% RAP may be used. The required binder and name shown below are based on the percent RAP used in the contract. The mix will be paid for at the bid price of SR-12.5A (PG70-28).

Percent RAP	Name
0	SM-12.5A (PG70-28)
1 - 15	SR-12.5A (PG70-28)
16 - 25	SR-12.5A (PG64-34)

TYPICAL SECTION A

Rock Wedge

3 in. Mill & Inlay

1.5 in. Overlay

Rock Wedge

1:1 @ edge of Asphalt

Match Existing Surface

24ft or varies

not to scale

1 Typical slope 1.56 % on tangents and on super-elevated sections to match existing super or as directed by the Engineer.

Existing surface may be irregular and contain edge ruts. Contractor to fill to finished slope. Material for wedges shall be furnished by the contractor and paid for as "Pavement Edge Wedge (Rock)".

Example Project Cont. – Descriptions

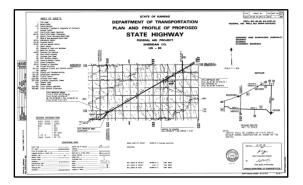
ROADWAY WIDTHS

		Approx.		Overlay
Location	mile	Width	Mill & Inlay Sq YDS	SQ YDS
Normal roadway	9.538	24	134,295	134,295
Curb and gutter in Glade	.082	40	See	Section B
Transition @ Refuge	.081	32	1,521	1,521
Widening @ Refuge	.15	40	3,520	3,520
Transition @ cemetery	.067	34	1,336	1,336
Widening @ cemetery	.135	44	3,485	3,485
Total	10.053		144,157	144,157

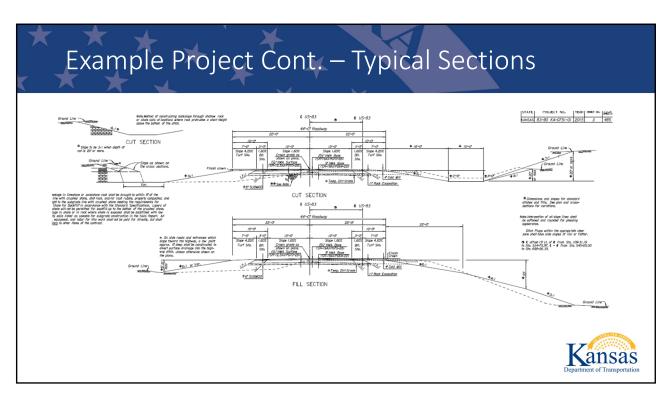
11

Example Project Cont. – Rates

Inlay based on <u>SR- 19-A @.1631</u> Ton/yd² Overlay based on <u>SR- 12.5-A @.0816</u> Ton/yd²


SS-1H @ 0.05 gal/yd2

Edge Wedge (Rock) @ 180 Tons/Mile


Example Project Cont. – Plan Sheets

- Typical Sections
 - Description/Scope of Work
- Plan & Profile
 - Horizontal/Vertical Alignment, Plan Notes
- Summary of Quantities
 - Application Rates

13

Example Project Cont. – Rates

	SUMMARY OF	QUANTI	TIES					
	ПЕМ	MAINLINE	SIDEROADS	ENTR'S	HO. ENT.	BUS. ENT.	TOTAL	UNIT
	ASPHALT SURFACE COURSE							
	† HMA Surface (SR-12.5A) (PG70-28) † HMA Comm. Gr. (Class A)	18,033.9	3./59.9		180.1	506.4	18,033.9 3,846.4	Tons Tons
	T PMA COMM. Gr. 1C/033 AU	_	3,759.9		180.1	506.4	3,046.4	1 ons
	ASPHALT BASE COURSE							
Ą	† HMA Base (SR-19A) (PG70-28)	34,526.9					34,526.9	Tons
Δ	† HMA Base (SR-19A) (P064-22)	111,480.9					111,480.9	Tons
	AGGREGATE SURFACE COURSE					 		
	Surfacing Material (AB-3)		868.8		6.5	81.2	956.5	Tons
	SUBSRADE MODIFICATION Aggregate For Subgrade Modification (Millings)	40,998,5	_		_	_	40,998,5	Cu, Yd,
	Fix Ash	8,523.6	-		_	_	8,523.6	Tons
	Manipulation for Aggregate Subgrade Modification (MillingsXFIv Ash)						245,991.0	Sa. Yd.
	Willing	45,/89	369				45,558	T
٧	Mining	45,709	369		_	_	45,558	Tons
	Emutsified Asphalt (SS-IHP)	187.7					187.7	Tons
						_		
		_	-		_	-		
			_			_		
						 		
	† Computed at the rate of 145 lb/ft ³ (Mixed Weight Aggregate and Ass	ohalf)						
	 Computed at the rate of 140 lb/ft³ (Dry Weight) 							
	△ Quantities increased 🔏 in thickness for contingencies.							
	Q. KOOT will retain 5,000 toos of the milled material from the existing The millings will be housed and stock joil by the Coetroctor of the strip 0,5 miles south of US-83/K-23 junction. Transporting of this be jild as Transporting Solviogable Material*. Transporting this mate Federally Non-Participating.	DOT mixing s material w	i iii					

15

Specifications & Construction Manual

- Requirements & Procedures
- Materials & Prequalifications
 - Basis of Acceptance
 - Last subsection of the materials division of specifications (1100-2600)
- Part V
 - · Sampling and Test methods

Specifications

Construction – 602 Example

- 602.2 QC Requirements
- 602.3 Materials
 - Directs you to Materials Spec applicable
- 602.4 Construction Requirements
- 602.5 Process Control
- Compaction, Weather, etc...

Materials - 1201 Example

- 1201.4 Prequalification
 - What a producer needs to submit to KDOT in order to be preapproved for use on a project
- 1201.5 Basis of Acceptance
 - Prequalification requirements
 - Certifications
 - Material Testing

17

Part V

- Test Procedures
 - HOW to test materials
- Testing Frequencies
 - How OFTEN to test materials

5.9.02 SIEVE ANALYSIS OF AGGREGATES (Kansas Test Method KT-02)

1. SCOPE

This method of test covers procedures for the determination of the particle size distribution of aggregates using standard sieves. KT-02 reflects testing procedures found in AASHTO T 27.

6.1. Nest the sieves in order of decreasing size of opening from top to bottom and place the sample, or portion of the sample, if it is to be sieved in more than one increment, on the top sieve. Agitate the sieves by hand or by mechanical apparatus for a sufficient period, established by trial or checked by measurement on the actual test sample, to meet the criterion for adequacy of sieving described in Section 6.3 of this test method.

6.2. Limit the quantity of material on a given sieve so that all particles have opportunity to reach sieve openings a number of times during the sieving operation. For sieves with openings smaller than No. 4 (4.75 mm) the mass retained on any sieve at the completion of the sieving operation shall not exceed 4 gin² (7 kg/m²) of sieving surface. For sieves with openings No. 4 (4.75 mm) and larger, the mass in kg/m² of sieving surface shall not exceed the product of 2.5 times the sieve opening in mm. In no case shall the mass be so great as to cause permanent deformation of the sieve cloth.

	SAMPLING ANI CONTRACTOR					
CONSTRUCTION OR MATERIAL TYPE 2015 Std. Spec. (SS 2015)	TESTS REQUIRED (RECORDED TO)	TEST METHOD		QUALITY CONTROL BY CONTRACTOR	CODE	VERIFICATION BY KDOT
DIVISION 600						
HMA (Plant Mix) Sec. 602, 603, 611 & 1103						
Individual Aggregates	Sieve Analysis of Aggregate (1%, 0.1% for No. 200 [75 μm] sieve, of mass)	KT-02	c	1 per 1000 TONS (1000 Mg) for each individual aggregate.		1 during the first 5000 TONS (5000 Mg) of HMA produced for each individua aggregate.
	Clay Lumps and Friable Particles in Aggregate (0.1 g or 0.01% of mass)	KT-07	c h			As required.

7. CALCULATIONS

7.1 Calculate the total percent of material retained on each sieve as follows

ercent Retained=

100 (Mass Retained)
Total Original Dry Mass of Sample

Percent Passing No. 200 (75 μm)=

 $\frac{100 \, (Sum \, of \, material \, Passing \, No. \, 200 \, (75 \, \mu m) \, by \, Sieve \, and \, Wash \,)}{Total \, Original \, Dry \, Mass \, of \, Sample}$

- 7.2. Instructions for using split sample procedure (KDOT Form #645):
- 7.2.1. Record the total dry mass of sample before separation as A.
- 7.2.2. Record the total dry mass of material retained on No. 4 (4.75 mm) sieve following separation as B.
- 7.2.3. Record the total dry mass of material passing the No. 4 (4.75 mm) sieve following separation as C

Exam Advice

- Know where to look in the spec and how to navigate it
 - It's not realistic to memorize specifications
 - TIP: Utilize search function for electronic spec
- Make sure you read the spec and surrounding information
- Not trying to trick you...
 - Testing you on specification, materials, procedures, etc...
 - Cannot teach you every scenario in the field
- MOST exam questions can be answered within these presentations
 - When in doubt, use your specifications!

19

END

• Have a good evening!

AP

Asphalt Paving Inspection Part 2 – HMA Plant

1

Stockpiles (2)

1103.2d

d. Stockpiling. Stockpile and handle aggregates in such a manner to prevent detrimental degradation and segregation, the incorporation of appreciable amounts of foreign material, and the intermingling of stockpiled materials.

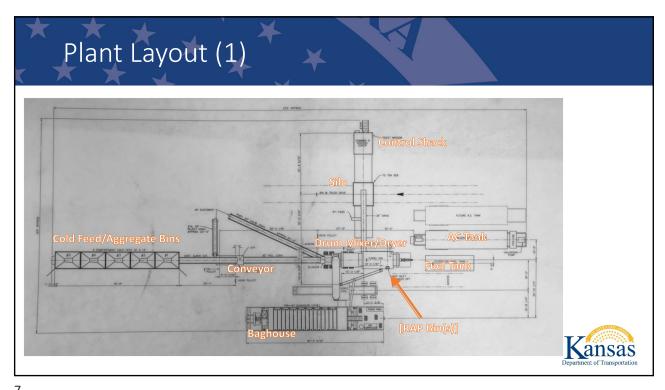
- Main goal is to prevent segregation and comingling
 - Heavier/coarser material will settle to the bottom and sides
 - · Material gradations!
- Short piles
 - Prevents coarse aggregate from falling
 - Made of multiple small piles dumped from truck
- Double or Triple stack
 - · Build in layers

3

Plant Specifications

- 109.1e Measurement by Weight
- 152.2 Weighing Equipment
- 155.3 Storage or Surge Bins
- 1103 Aggregates for HMA
- Division 602 (15-06007-R01) –
 HMA Construction (QC/QA)
 - 602.4a Plant Operation
 - Asphalt Binder, Additives
 - Aggregates
 - HMA
 - · End of Day Quantities

Plant Setup (1)



5

Plant Setup (2)

/

Cold Feed/Aggregate Bins

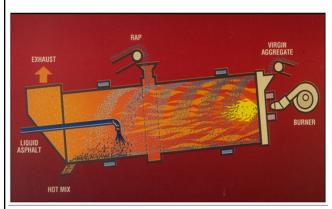
10

Avoid 'Comingling' Aggregates

11

Conveyor & Shaker

Agg/RAP Bins



- Material quantity based on mix design
 - Submitted min. 10 working days prior to production
- · Agg. Bins to be separated
 - Screens/Grizzlys also used (2 1/4 inch)
- Max %RAP shown in Contract/MR
 - Deduct for excess RAP; based on 4-point moving average
- Totalizer readings used for RAP quantities (602.5d)
- · Checked min. twice daily
- Included in End of Day quantities
- FRAP (1103.2a(4))
- RAS (1103.2a(5))

15

Drum Mixer/Dryer

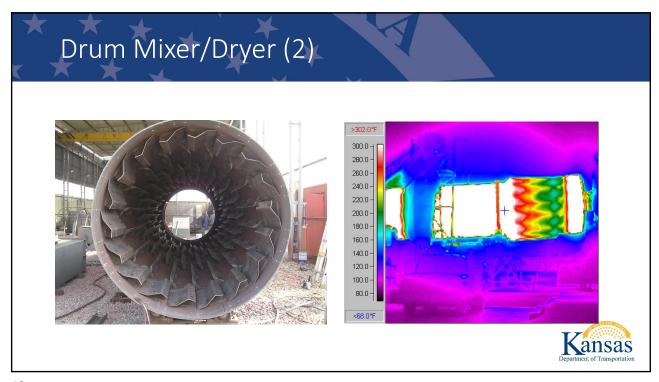
Inputs

- Virgin Aggregate
- RAP
- AC (Liquid Asphalt)
- Heat, lots of heat

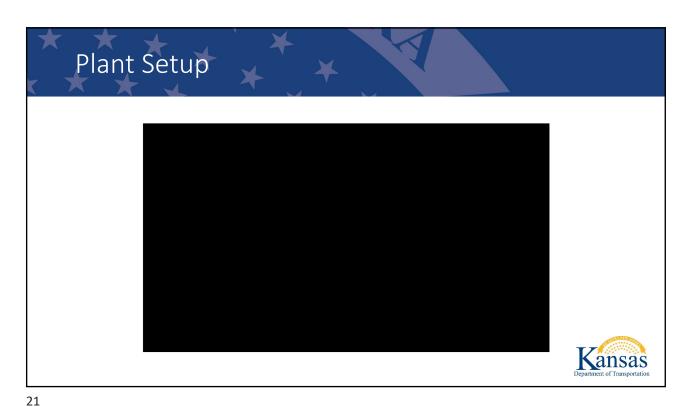
Outputs


- HMA
- Exhaust
 - Filtered through baghouse

Baghouse/Dust Collector


- Fabric filters to collect fines
- Controlling air emissions

17

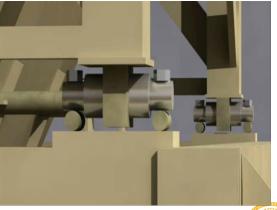


Drum to Silo – HMA

21

Storage/Surge Bin with Gob Hopper (1)

155.3


- Designed to prevent segregation
- Protected from heat loss
- Use a gob hopper or other device to load silo
- Loading sensors
- HMA should not be stored longer than 3 hours

Storage/Surge Bin with Gob Hopper (2)

Kansas
Department of Transportation

23

Weighing Requirements

- Accurate within 0.5% throughout use (ERR)
- Equipment must be tested and certified
 - before and after setup, prior to production
 - 6-month intervals
 - When receiving repairs
 - Other times deemed necessary

- Scales shall be checked at random intervals
- Check scales a minimum 2 times per week
 - Use 2 different scales (co-op)
- Scale Operators remain the same unless change is approved

HMA Loading

Surge Bins

- Asphalt weighed in the silo
- Tickets generated from control shack/plant operator

Platform Scale

- Trucks loaded from silo then sent to scales
- Tickets generated from scale operator

25

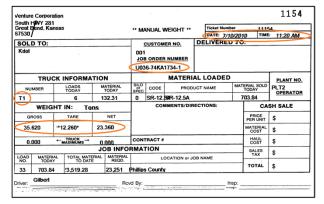
Scales

Silo Scale/Surge Bin

- Net Weight
 - No need for tare/gross weight
 - · Only material weights
- Load Cells
 - Weigh the material as loaded into the silo and then deposited into truck

Platform Scales

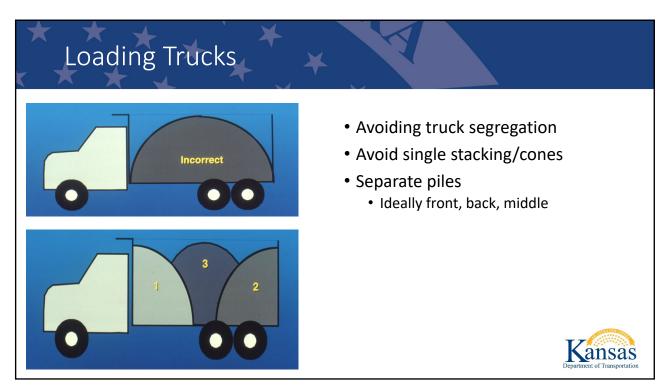
- Tare Weight Gross Weight = Net Weight
 - Tare Weights twice a day
- Scale must be large enough to accommodate the longest truck/trailer in a single operation
 - No Split weighing (152.2)



Scale Tickets

Tickets must include:

- · KDOT Project Number
- Material
- · Truck Information
- · Weights (Gross, Tare, Net)
- · Pay Quantity
- Scale Operator and Road Inspector Initials


27

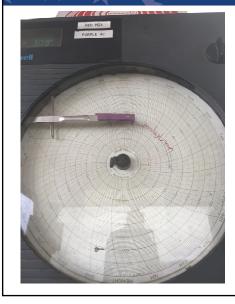
Hauling Equipment (152.1b)

- End dump or belly dump
- Smooth metal beds to prevent loss of material
 - · Bed liners or release agent often used
 - PQL 27 Release Compound for Asphalt Mixes
 - DO NOT use petroleum products ie diesel
- Equipped to protect from heat loss
 - Covers/tarps to cover the entire load of HMA
- 602.4d
 - Minimize hauling over surface/final course
 - Deliver to paver at sufficient temperature for placement and compaction Kansas

Plant Inspection


Information for Plant Inspection

Typically, this part of the Superpave Lab Inspector's job


31

Print-out Information

35

Plant Checks

We are looking for...

- Totalizer Information
- % Moistures
- Production Rate (Tons per Hour)
- Metered AC and Additives
- Temperatures
 - · Mix and AC
 - Manufacturer's Recommendations
 - Mixing & Compaction Temperatures

Daily Quantities

- Excel Sheets of daily totals
 - KDOT or online generated
 - Confirm quantity totals
- · Write waste on tickets
 - Plant waste provided by plant, Road waste written on ticket
 - Plant waste could be beginning or end of day
 - Road waste could be from ordering too much or complications while paving

37

END

• Main thing when in an asphalt lab is to get in a good rhythm

Asphalt Paving Inspection Part 3 – Paving

We'll discuss...

Tack Coat, Pavers & MTV's, Grade Control, Compaction, Segregation, Densities, Joints, Smoothness, Miscellaneous items and HMA Commercial Grade

1

Asphalt is loaded and weighed... Now what

- Material Transfer Device/Vehicle (MTD/MTV)
- Paving
- Compaction with Rollers
- Density testing with Nuclear Gauge
- But first... Tack Coat (Emulsified Asphalt)

Distributor and Tack Coat

155.2 - Asphalt Distributor

- We need them to...
 - · Show gallons used
 - Show temperature
 - Cover the required width consistently
- Calibration (prior to use on project)
 - Accurate within 0.01 gallon per square yard
 - Certified by District Materials Engineer and on file with KDOT

602.4b - Road Surface Preparation

- · Earth Subgrade
 - Prepare by sprinkling, lightly scarifying, blading and rolling until proper crown is obtained
 - Lightly spray with water to obtain moistened condition
 - Do not place when frozen, muddy or when raining or snowing
- Existing Asphalt, Concrete or Brick Pavement
 - · Clean of all foreign materials
- Tack Coat
 - Weather may warrant a request to change asphalt

3

Surface Preparation

_

Distributor 2

7

Construction Requirements 1

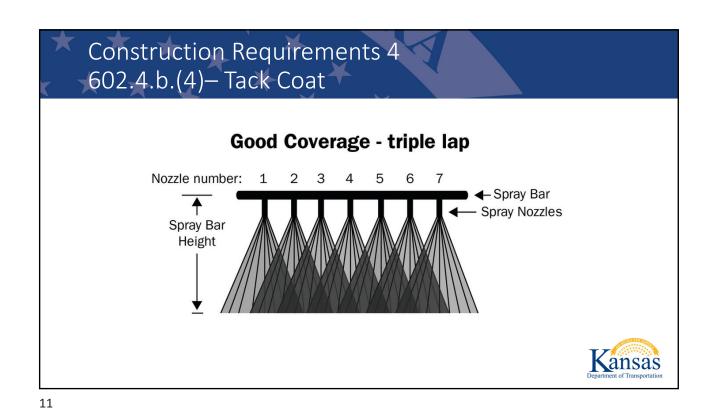
602.4.b.(4) Page 15-06007-10

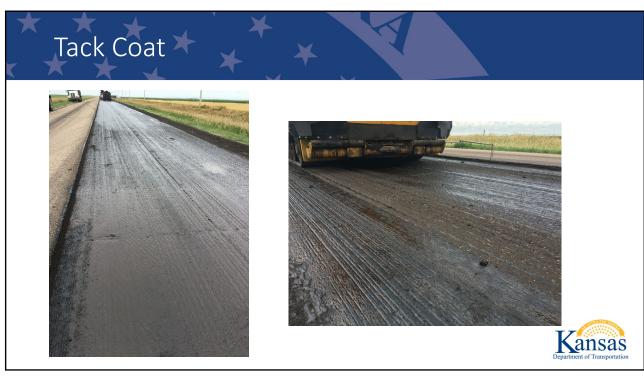
- Tack Coat
 - Prior to placing the HMA, apply a tack coat to the existing surface as shown in the contract documents.
 - Application rate is shown on the Typical Section in the Contract
 - Emulsified Asphalt SS-1H most common

Construction Requirements 2

602.4.b.(4) Page 15-06007-10

- "Tack" coat is often a diluted mixture of emulsified asphalt and water
- The brown color will fade as water evaporates and oil sets
- Pavement should not be placed until tack coat has "broken" i.e. no more brown color/water




9

Construction Requirements 3 602.4.b.(4) Page 15-06007-10 – Tack Coat

Temperature Correction Example 1

Refer to Construction Manual Section 5.10.3 Given:

- Stab = 10,000 gallons of emulsified asphalt
- Asphalt Temp = 190°F

Find tons of asphalt in the tanker

- 1. Convert to 60 °F
 - Construction Manual (Part V) 5.10.3 (Table 3)

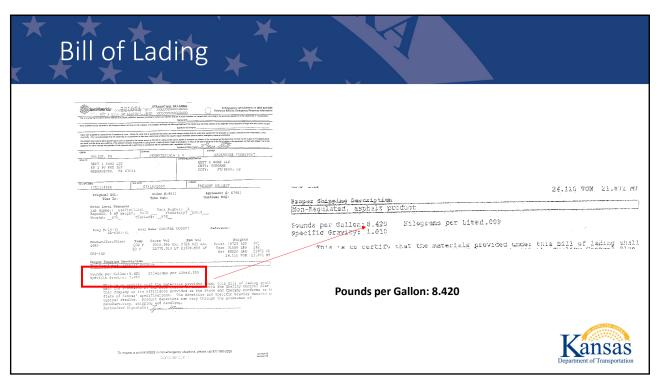
13

CM – 5.10.3 (Table 3)

					T	ABLE 3					
			Te	emperat	ureVolume C	orrections fo	or Emuls	ified Asphalts			
Legend:		oC =			ture in Celsius						
		°F =			ture in Fahrenl						
		M =	Multiplier	for cor	recting volume	s to the basis	s of 15.6	C (60° F)			
			T			_			T		
°C	°F	M	°C	°F	M	°C	°F	M	°C	°F	M
10.0	50	1.00250	32.2	90	0.99250	54.4	130	0.98250	76.7	170	0.97250
10.6	51	1.00225	32.8	91	0.99225	55.0	131	0.98225	77.2	171	0.97225
11.1	52	1.00200	33.3	92	0.99200	55.6	132	0.98200	77.8	172	0.97200
11.7	53	1.00175	33.9	93	0.99175	56.1	133	0.98175	78.3	173	0.97175
12.2	54	1.00150	34.4	94	0.99150	56.7	134	0.98150	78.9	174	0.97150
12.8	55	1.00125	35.0	95	0.99125	57.2	135	0.98125	79.4	175	0.97125
13.3	56	1.00100	35.6	96	0.99100	57.8	136	0.98100	80.0	176	0.97100
	57	1.00075	36.1	97	0.99075	58.3	137	0.98075	80.6	177	0.97075
13.9			36.7	98	0.99050	58.9	138	0.98050	81.1	178	0.97050
	58	1.00050	36.7								

87.8	190	0.96750
88.3	191	0.96725
88.9	192	0.96700
89.4	193	0.96675
90.0	194	0.96650

Temperature Correction Example 3


Correct Volume to 60°F

10,000 gal x 0.96750 = 9,675 gallons (@ 60°F)

- 2. Convert gallons to tons
 - See Bill of Lading for density (lbs/gal) of emulsified

15

Temperature Correction Example 5

Convert Gallons to Tons:

9,675 gal x 8.420 lbs/gal = 81,463.5 lbs

81,463.5 lbs ÷ 2000 lbs/ton = 40.73 tons

17

Temperature Correction Example RECAP

- STAB = 10,000 gallons
- Asphalt Temp = 190°F
 - Correction factor from chart = 0.96750
 - Load ticket shows 8.420 lbs/gallon
- 10,000 x 0.96750 = 9,675 gallons at 60°F
 - Use 8.420 lbs/gallons to get 81,463.5 lbs
 - Use 2000 lbs/ton to get 40.73 tons

Temperature Correction

- If Temperature of oil is greater than 60°F, then corrected gallons will be less than measured gallons.
- If Temperature of oil is less than 60°F, then corrected gallons will be more than measured gallons.
- 601 Asphalt Application Temperatures

discretion of the Engineer.

All emulsified asphalts reheated to temperatures above the maximum shown above will be considered overheated and may be rejected pending re-sampling and re-testing of the material at the discretion of the Engineer.

- Typical with HMA is SS-1H or CSS-1H (Max 150°F)
- Another example provided in Surfacing Section
 - We will cover dilution then, as well

19

Tack Coat – Emulsified Asphalt Typically Used

SECTION 601 ASPHALT APPLICATION TEMPERATURES

Page 600-1, subsection 601.1, delete TABLE 601-	l and replace v	with the followi	ng:					
TABLE 601-1: ASPHALT	APPLICATI	ON TEMPERA	ATURES					
THIN AND OD ADD	TEMPERATURE RANGE (°F)							
TYPE AND GRADE	Spra	ying	Plant Mixing					
	Min.	Max.	Min.	Max.				
Asphalt Binder	275	340	*	*				
Cutback Asphalt, MC 30	88	125	88	125				
Cutback Asphalt, MC & RC 70 &250	125	200	125	200				
Cutback Asphalt, MC & RC 800 & 3000	150	250	150	250				
Asphalt Rejuvenating Agent, ARA	70	150	70	150				
Emulsified Asphalt, CRS-1H, RS-1H, SS-1HP, CMS-1, MS-1, HFMS-1, RS-1HP, CRS-1HP	100	180	100	180				
Emulsified Asphalt, SS-1H, CSS-1H	None	150	None	150				
Emulsified Asphalt, CSS-1HM, CSS-Special	None	120	None	120				
EBL	120	180	NA	NA				

* Use the Producer's recommended mixing temperature rang

- Brief Discussion on Liquid **Asphalt Materials**
 - Section 601 Asphalt Application **Temperatures**
 - Errata Sheet 15-ER-1-R20

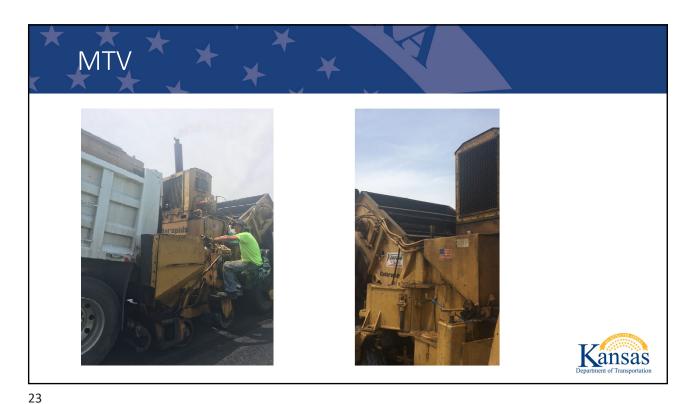
Material Transfer Device

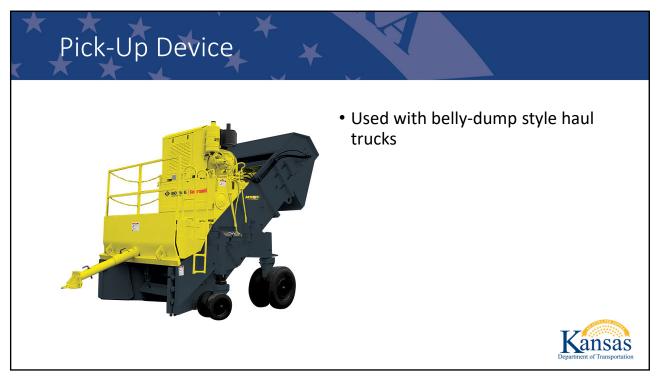
155.5

- Mobile conveyors, shut buggies, material transfer vehicles, material transfer paver and pickup devices are <u>all</u> considered MTDs
- Must be...
 - Self-propelled
 - Move independent OR attached
 - Able to mix and deposit material at uniform temperature and consistency
- Preventing segregation!

602.4e

- Remix hauled material prior to placement (with a few mix design exceptions)
- Do not dump wings of the paver hopper


21


Shuttle Buggy

Asphalt Paver 1

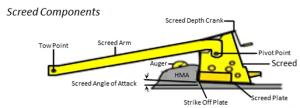
155.4

- Self-contained and powerpropelled
- Equipped with automatically controlled activated screed and heated if necessary
- Capable of paving width and thicknesses required
- Automatic grade control (sensor operated)
- Screed produces an even, finished surface

25

Asphalt Paver 2 Tractor Hopper Depth Crank Rollers Tow Point Side Arm Augers Kansas

Asphalt Paver – Hopper



Asphalt Paver – Screed

29

Paving Operations 1

602.4e

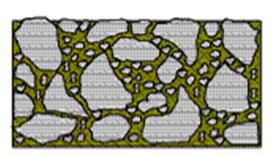
- Spread and finish material to reasonably true crown and grade by an automatically controlled paver without tearing surface.
- Uniform in density and texture and free from surface irregularities.
- Except when other methods are approved, the paver shall be operated at a speed which will provide a <u>uniform rate of placement</u> without undue interruption.
- If the automatic grade control devices breaks down, the Engineer may permit the paver to operate to the close of the working day provided the surface is satisfactory, but it shall not operate on a lift that was laid without automatic controls.

Paving Operations 2

602.4e(3)

- Grade Control Surface Tolerances Lift Thickness
 - Except for leveling courses, nominal compacted thickness for the bituminous mixture shall not exceed 2 inches for surface courses and 4 inches for other courses unless shown otherwise in the Contract Documents or specified by the Engineer. (Table 602-9)

TABLE 602-9: NOMINAL COMPACTED THICKNESS						
Lift	Maximum Nominal Compacted Thickness					
Surface	2 inches					
Base	4 inches					

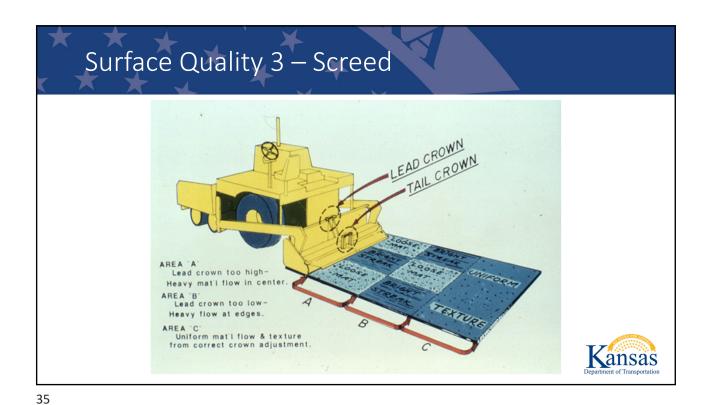


31

Paving Operations 3

602.4.e.(3) Page 15-06007-11

- Grade Control Surface Tolerances Lift Thickness
 - The minimum lift thickness for any HMA mixture is 3 times the nominal maximum aggregate size, unless otherwise designated in the contract documents or approved by the Engineer.


Surface Quality 1

- Speed and continuity of paver operation
- Amount and flow of material in hopper, full & consistent flow is optimal
 - · Avoid overfilling or letting it get too empty
- Head of material in augers
- Type of mix being paved
- Condition of existing surface
- Weather conditions

33

SURFACE Quality 2 — Screed CORRECT DEPTH OF MAT MAINTAINED. SCREED RISES DUE TO EXCESS MATERIAL FORCED UNDER NOSE OF SCREED. READ AT MATERIAL VOLUME TOO NIGH BEAD AT MATERIAL VOLUME TOO LOW DEPARTMENT OF TRANSPORTED. PLAD AT MATERIAL VOLUME TOO LOW DEPARTMENT OF TRANSPORTED.

Paving Operations

602.4.e.(4) Page 15-06007-11


- Grade Control Surface Tolerances Lift Thickness
 - Grade control shall be achieved by use of one or more of the following grade reference devices. Approval based on performance.
 - Traveling Stringline
 - Reference Shoe
 - Erect Stringline
 - Stringless Paving
- Grade Control Traveling Stringline
 - Attach a traveling stringline or ski type attachment, a minimum length of 30 feet, to the paver and operate parallel with its line of Kansas travel.

37

Traveling Stringline

Reference Shoe

602.4.e.(4)(b) Page 15-06007-11

- Grade Control Reference Shoe
 - A short reference shoe or joint matching device shall be attached to the paver for control in matching surface grades along longitudinal joints.
 - Good for matching curb & gutter or any surface you want to match grade exactly.

Kansas

39

Erected Stringline

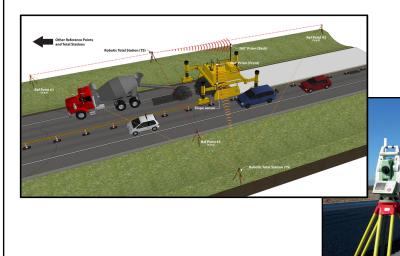
602.4.e.(4)(c) Page 15-06007-11

- Grade Control Erected Stringline
 - An erected string line consisting of a tightly stretched wire or string offset from and parallel to the pavement edge on one or both sides
 - Erected parallel to the established pavement surface grade
 - Supported at such intervals as necessary to maintain the established grade and alignment. (Typically 50' to 100')

Erected Stringline

Kansas Department of Transportation

41


Stringless Paving

602.4.e.(4)(d)

- Grade Control Stringless Paving
 - Horizontal control guided via GPS
 - Vertical control guided via Total Stations, <u>GPS is not</u> allowed for vertical control.
 - When paving on fresh subgrade it must be trimmed by automatically controlled machine via erected stringline or using approved stringless method above.

Stringless/GPS

43

Asphalt Compaction

Equipment

- Self-Propelled Smooth Faced Steel Rollers 151.4c
- Self Propelled Vibratory Rollers 151.5
- Pneumatic Tired Rollers 151.3

Asphalt Compaction Equipment - 151

- 151.1
 - "If a numerical density is specified, the Engineer may waive the roller weight requirement if the roller compacts the material to the specified density. If a numerical density is not specified, the Engineer may waive the roller weight requirement if the roller performed satisfactorily on a previous KDOT project."

45

Which Rollers Are Used Where???

	Required Number & Type of Rollers				
Construction Operation	Pneumatic-Tired Roller	Smooth Faced Steel Roller			
HMA/WMA Construction	*	*			
Ultrathin Bonded Asphalt Surfacing (UBAS)	-	**			
Surface Recycle (HIR) Construction	-	2			
Cold Recycle (CIR) Construction	1	1			
Chip Seal Construction	3	-			

* Minimum of 2 rollers required when plant is producing less than 275 tons per hour, 3 rollers required when plant is producing more than 275 tons per hour. Final rolling

pass shall be completed with smooth steel roller in static mode. 602.4e.(5) 15-06007 Pages 12-13

** 613.43.(2) – Roll UBAS with minimum of 1 pass, maximum of 3 passes with 2 axle tandem steel rollers (min. 10 Ton)

Self-Propelled Smooth Faced Steel Rollers

151.4c Page 150-1 – 150-2

- Requirements per 151.4c
 - Smooth faces on all steel rollers
 - Require water tanks, sprinkling devices and scrapers to prevent material build up on drum
 - Two-Axle rollers must weigh 8-12 Tons

Kansas

47

Self-Propelled Vibratory Rollers 1

- Requirements per 151.5 Page 150-2 150-3
 - Operate vibratory roller at frequency and amplitude necessary for desired compaction without damaging material
 - Shall be amplitude adjustable, operate at low amplitude unless otherwise directed
 - Minimum frequency = 1,800 vibrations/minute
 - Minimum static force on drum = 135 lbs per inch of roller width

Self-Propelled Vibratory Roller 2

- Requirements per 151.5
 - Operate vibratory roller at frequency (min 1,800 vibrations/minute) and speed to achieve 10 impacts per linear foot
 - Above bold line 151.5 Table 151-2

49

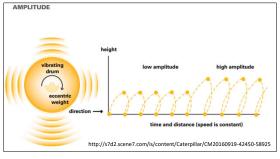

Self-Propelled Vibratory Rollers 3

	TABLE 151-2: HOT MIX ASPHALT PAVING Impacts per Linear Foot											
Roller Speed	Vibrations Per Minute											
MPH (ft./Min)	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000
1.0(88)	20.5	22.7	25.0	27.3	29.5	31.8	34.1	36.4	38.6	40.9	43.2	45.5
1.5(132)	13.6	15.2	16.7	18.2	19.7	21.2	22.7	24.2	25.8	27.3	28.8	30.3
2.0(176)	10.2	11.4	12.5	13.6	14.8	15.9	17.0	18.2	19.3	20.5	21.6	22.7
2.5(220)	8.2	9.1	10.0	10.9	11.8	12.7	13.6	14.5	15.5	16.4	17.3	18.2
3.0(264)	6.8	7.6	8.3	9.1	9.8	10.6	11.4	12.1	12.9	13.6	14.4	15.2
3.5(308)	5.8	6.5	7.1	7.8	8.4	9.1	9.7	10.4	11.0	11.7	12.3	13.0
4.0(352)	5.1	5.7	6.2	6.8	7.4	8.0	8.5	9.1	9.7	10.2	10.8	11.4
4.5(396)	4.5	5.1	5.6	6.1	6.6	7.1	7.6	8.1	8.6	9.1	9.6	10.1
5.0(440)	4.1	4.5	5.0	5.5	5.9	6.4	6.8	7.3	7.7	8.2	8.6	9.1


Operate at speed/frequency combination above bold line (min. 10 impacts per foot)

Self-Propelled Vibratory Rollers 4

Amplitude is the distance that the drum moves *into* the mat (the impact force).

Frequency is the number of times the drum hits the mat, vibrations per minute.

51

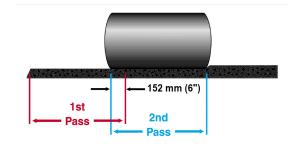
Self-Propelled Vibratory Rollers 5

- The drum is moving into the mat so the impacts need to be properly spaced
- Need the right balance of amplitude and frequency to achieve density and a smooth finish

Oscillation

- Spec allows oscillating roller as a finish to remove marks (602.4e(6)(c))
- Oscillation is a non-vertical force
- Removes the up/down motion and moves horizontally, only.

55


Self-Propelled Vibratory Rollers - 7

Spray nozzles not working properly

Compaction Requirements & Testing 1

57

Compaction Requirements & Testing 2

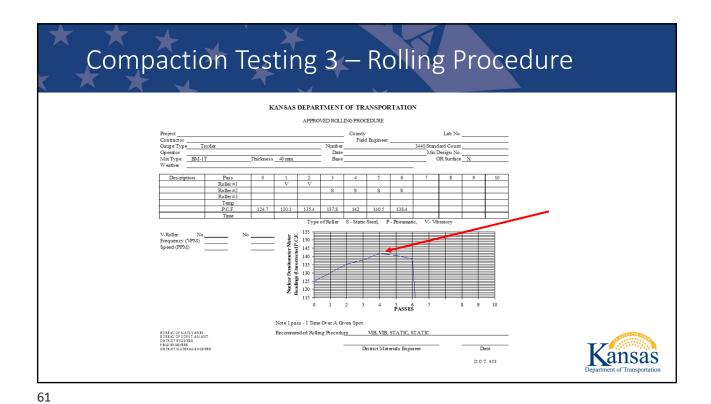
- Compaction of HMA Mixtures 602.4e.(5)
 - Compact as soon as possible after spreading and strike-off as possible without shoving or tearing
 - Minimum of 2 rollers required for HMA
 - Dependent on plant production
 - Achieve maximum density before mat temperature falls below 175°F (165° for WMA) (602.4e.(6)(c))
 - Final rolling of surface shall be done with a steel roller in static mode unless otherwise specified

Compaction Testing 1

(602.4e(6))

- HMA placed less than 1.5" thick
 - · Rolling procedure using nuclear density gauge
- HMA placed 1.5" thick or greater*
 - Compaction Testing Asphalt Density Pay Adjustment
 - Performed by certified personnel Contractor (QC/ACC) & KDOT (QA/VER)
 - Cores <u>OR</u>
 - · Nuclear Density Testing

*Exception for all HMA (Commercial Grade), HIR – use rolling procedure



59

Compaction Testing 2— Rolling Procedure

- Used on HMA lifts placed less than 1.5" thick
- Use nuclear density gauge to determine optimum rolling procedure
 - Take one 1 min. reading directly behind paver
 - Take one 1 min. reading after each roller pass
 - Check temperature behind paver and before & after each roller pass
 - Record & plot (DOT Form 608 next 2 slides)
 - · Determine maximum density "break-over point"
 - · Periodically check density & procedure as required

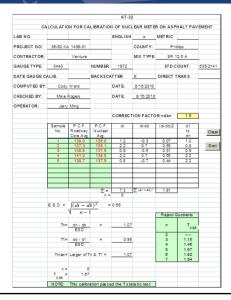
Compaction Testing 4 – Density Testing

- Used on HMA lifts placed 1.5" thick or greater
- Asphalt Density Pay Adjustment
- Cores or Nuke Gauge (more common)
- Performed by certified personnel Contractor (QC/ACC) & KDOT (QA/VER)
- Density Lot 1 day of production
- Sublot Size Based on daily production (typically 5 sublots)
 - Contractor 2 locations per sublot
 - KDOT 1 location per sublot

Compaction Testing 5 – Cores

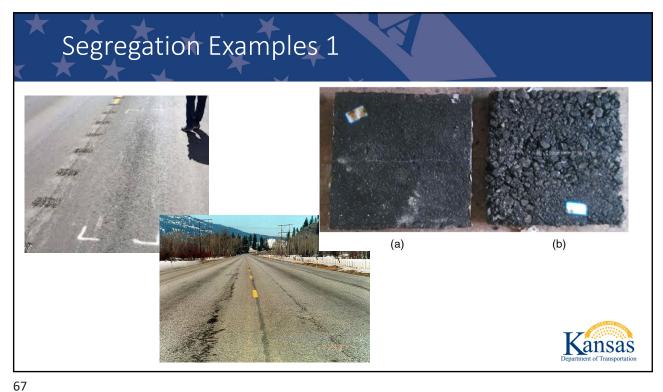
- Contractor required to cut all cores
- Density determined using KT-15

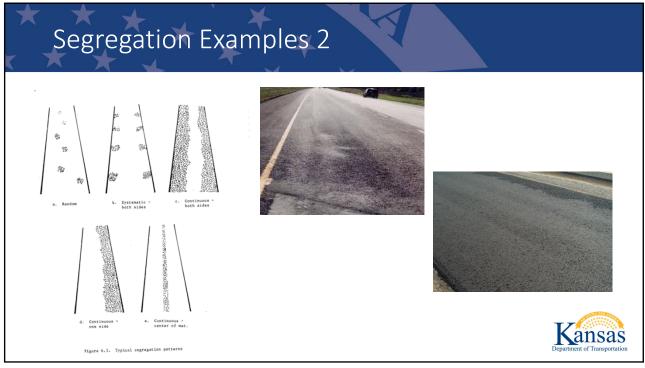
63


Compaction Testing 6 – Nuke Gauge

Compaction Testing 7- Nuke Gauge

- Nuke gauges must be calibrated
 - For every mix
 - · For every lift location
 - For any thickness changes
- Density determined using KT-15
- Contractor and KDOT




65

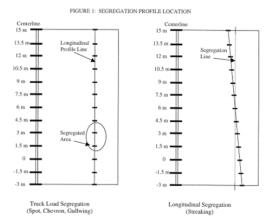
Segregation

- Segregation separation of large & small aggregates in bituminous mixture into streaks or patches of coarse and/or fine areas
 - Coarse Segregation low AC content, low density, high air voids, rough surface texture, accelerated rutting and fatigue failure
 - Fine Segregation high AC content, low density, smooth surface texture, accelerated rutting
- Common causes in the field
 - Temperature differences
 - Hopper, augers, etc...
 - · "Piles" during haul and delivery

Causes of Segregation

- Segregation "Check Points"
 - Aggregate stockpiling / handling
 - Plant operation
 - Truck loading
 - Truck dumping
 - Material Transfer Device/Vehicle (MTD/MTV)
 - Paver / Laydown machine

69


Segregation Profile 1 (CM 5.8.3)

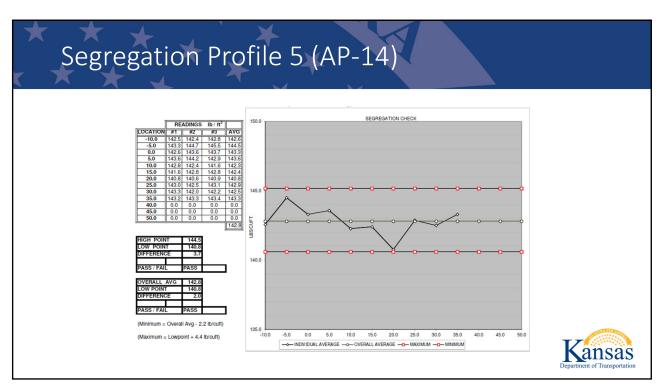
- Series of density tests with nuclear density gauge
 - Minimum of 10 locations, three 1-minute shots per location
 - Comparison of average density values to determine whether segregation has occurred
- Straight Line Profile
 - Segregation caused by plant operation, truck loading, transfer device
- Transverse Profile
 - Segregation caused by paver operation (longitudinal streaking)

Segregation Profile 2 (CM 5.8.3 & KT-32)

71

Segregation Profile 3 – CM 5.8.3

- Allow paving unit to progress 1,000 ft before performing a segregation check
- Initially perform 4 segregation checks for each mix
 - AM/PM
- Perform check in visibly segregated area, or use a stopping location of the paver for a zero point
- If the paver does not periodically stop and no visible segregation, randomly select location
- Screed = 0 point, start 10 ft behind screed and take at least 10 shots every 5 ft


Segregation Profile 4 (15-06007 & CM 5.8.3)

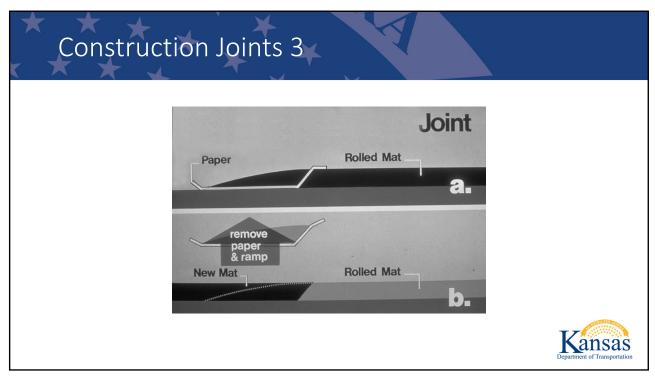
- Evaluate segregation per 602.4e.(1) Table 602-7 Page 15-06007-10
 - Maximum Range = highest lowest
 - Maximum Drop = average lowest

TABLE 602-7: SEGREGATION AND UNIFORMITY OF DENSITY CHECK									
Mix Designation	Maximum Density Range (highest minus lowest)	Maximum Density Drop (average minus lowest)							
All	4.4 lbs./cu. ft.	2.2 lbs./cu. ft.							

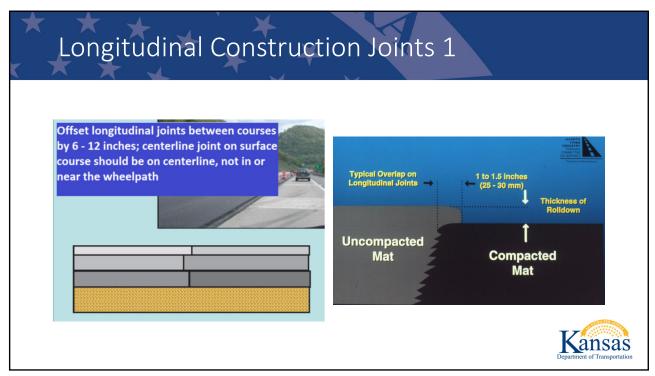
73

Segregation Profile 6 (CM 5.8.3)

- One Failing Segregation Profile
 - Notify contractor, contractor must make adjustments to mitigate segregation
- Two Consecutive Failing Segregation Profiles
 - Suspend production, contractor must make adjustments, proceed per 5.8.3(6)
- Four Consecutive Passing Segregation Profiles
 - District Materials Engineer (DME) may reduce frequency


75

Construction Joints 1


- Transverse Joints (602.4e.(9)(a))
 - Contractor shall use a method of making transverse construction joints which:
 - · Provide thorough and continuous bond
 - Provide an acceptable surface texture
 - · Meet density requirements
 - Surface elevation doesn't vary more than 3/16" in 10 ft longitudinally across joint
- Longitudinal Joints (602.4e.(9)(b))
 - Longitudinal construction joints shall be:
 - Well bonded and sealed to obtain maximum compaction
 - Offset 6 to 12 inches in successive courses
 - Comply with traffic lane edges for width of the surface of top course placement, i.e.
 - Centerline joint must be on centerline on surface course

Longitudinal Construction Joints 2

81

Joint Density Requirements

- Evaluate longitudinal joint density per CM 5.8.4
 - Evaluate one longitudinal location per sublot
 - Use KT-32 (nuke meter) to determine joint density
 - Compare to interior joint density OR % $\rm G_{mm}$ (15-06007-R01 Table 602-8)
 - If 2 consecutive joint density evaluations fail, suspend paving operations, proceed per 5.8.4 (similar to failing segregation check procedure)

TABLE 602-8: JOINT DENSITY REQUIREMENTS						
Nuclear Gauge Readings	Requirement					
Interior Density minus Joint Density	≤ 3.0 lbs./cu. ft.					
OR						
Joint Density	\geq 90.00% of G _{nm}					

Joints and Density Testing

- Important Notes:
 - · Locations are randomly generated
 - Locations need to be able to be replicated so...
 - Measure out your density locations with wheel/tape and mark out nuke with lumber crayon
 - If there is a dispute, this will help us replicate the shots after some time has passed

83

Longitudinal Construction Joints Height Differential

	TABLE 805-4: HEIGHT DIFFERENTIAL TREATMENT						
Condition Height Differential ("D") Treatment		Treatment					
Nominal height	1 inch $\leq D \leq 2$ inches	Use the Uneven Lanes signs (W8-11) as part of the Traffic Control Plan.					
differential between driving lanes	2 inches $\leq D \leq 4$ inches	Use the Uneven Lanes signs (W8-11) as part of the Traffic Control Plan. Construct a 3:1 or flatter slope wedge against the pavement edge.					
open to traffic	D > 4 inches	This condition is not permitted unless otherwise indicated by the contract documents.					
	D≤2 inches	Use the Shoulder Drop-Off sign (W8-17 and W8-17P) as part of the Traffic Control Plan.					
Nominal height differential between driving lane and shoulder	2 inches $\leq D \leq 4$ inches	Use Shoulder Drop-Off signs (W8-17 and W8-17P) signs as part of the Traffic Control Plan. Construct a 1:1 or flatter slope wedge against the pavement edge. Chamnelizing devices may be used instead of a wedge if approved by the Engineer and when placed so the maximum device spacing, measured in feet, is equal to the posted speed limit prior to construction. height differential is expected to last longer than 2 weeks, the use of a 3:1 or flatter slope wedge against the pavement edge is required and the use of chamnelizing devices instead of a wedge is not permitted unless otherwise indicated in the Contract Documents.					
or adjacent pavement that is closed to traffic	D > 4 inches	To the extent feasible, provide an obstruction free recovery area between the channelizing devices and height differential. Use shoulder Drop-Off signs (W8-17 and W8-17P) as part of the Traffic Control Plan Construct a 3:1 or flatter slope wedge against the pavement edge. Channelizing devices may be used instead of a wedge as approved by the Engineer when the channelizers are placed so the maximum device spacing, measured in feet, is equal to the posted speed limit prior to construction and no height differentials greater than 4 inches are left overnight without a wedge, unless otherwise indicated in the Contract Documents.					

Factors Affecting Asphalt Pavement Smoothness

- Base / Subgrade / Existing Roadway
- Milling
- Paver Operation
- Roller Operation
- Mix Properties

85

Asphalt Pavement Smoothness

(15-06007-R01 & 15-06006-R01)

- Surface Tolerances Bumps / Dips / Defects
 - Stringline or Straightedge
- Smoothness Profilograph Roughness Index (PRI)
 - Profilograph Testing
- Asphalt Pavement Smoothness Bid Item
 - Monetary contract adjustment based on Profilograph Testing & PRI
 - New Construction vs Rehabilitation Construction

Surface Tolerances

- Identify defects using a straightedge or stringline
- 602.4h Page 15-06007-14 Table 602-11
- Defects require correction

TABLE 602-11: MAXIMUM VARIATION OF THE SURFACE					
Length (feet) Maximum Variation of the Surface (inches)					
10	3/16				
25	5/16				

87

Stringline Checks Check 2 Check 3

Aluminum Straightedge

89

Smoothness - PRI

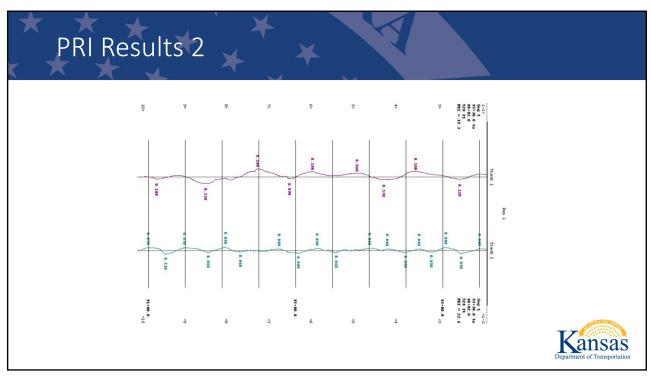
Profilograph Roughness Index (PRI)

- 603.3a details which items to be profilographed and which of these are eligible for pay adjustments
- Certified Profilograph Equipment (603.3b & 603.3c)
 - California Type ("Push")
 - Speed Profilograph
 - PQL 44 & CIT Certified Operator
- Pavement Section (603.3c)
 - 0.10 mile long (528 ft)
 - 1 lane wide (12 ft nominal)

California "Push"

91

High Speed Profilograph



PRI Results 1 PRI (in/mi) 20.950 PRT PRT 17.700 2.350 23.500 20.600 1.330 13.300 0.940 9.400 11.350 1.520 15.200 0.960 9.600 4 12.400 16.700 14.900 1.710 17.100 15.700 <u>6</u> 1.570 16.400 1.140 11.400 22.600 8 28.900 26.100 Defect Locations: Length (ft) to to to Kansas

93

Asphalt Pavement Smoothness Bid Item

- Applies if HMA depth ≥ 4" AND Asphalt Pavement Smoothness Bid Item in contract (603.3a)
- Requires Profilograph Testing
- Monetary Contract Adjustment based on PRI
 - DOT Form 242
 - Tables 603-4 & 603-5
 - Based on type of construction

95

Bump Grinding/PRI Correction

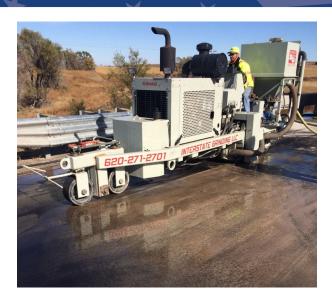
- Correct all bumps & dips
- If profilograph testing is required, grinding based on PRI according to Tables 603-1, 603-2, 603-3
- Dispose of slurry & residue per 603.3f
- Correct all areas within each section having high or low points (bumps or dips) with deviations in excess of 0.4 inches in a length of 25 feet or less regardless of the PRI value.

Types of Grinding

• Diamond Grind vs Profile (Mill) Grind (603.3e)

e. Corrections. Make the required corrections for pavement smoothness before making the pavement thickness determinations. Use these methods for corrections:

- diamond grinding when the layer is the final riding surface
- when the layer will be covered with a chip seal or microsurfacing
 - micro-milling or fine-lace milling (minimum of 60 teeth per foot) may be done in a continuous 100foot segment provided there is at least 400 feet of the surface adjacent to the segment that is not
 - milled or diamond ground diamond grind when more than 100 feet within a 400-foot segment requires correction. The Engineer may permit micro-milling if in the opinion of the Engineer the resulting surface is not detrimental to the functionality of the chip seal or the microsurfacing milling if the layer will be covered by UBAS or a layer of HMA.
- remove and replace the entire pavement thickness
- remove the surface by milling, and replace the specified surface course overlay (not patch) with the specified surface course
- other methods that are approved by the Engineer


Apply the corrective measure to the full-lane width of the pavement. The corrected areas shall have uniform texture and appearance. The beginning and ending of the corrected areas shall be squared normal to centerline of the paved surface.

When grinding is performed, use vacuum equipment or other continuous methods to remove grinding slurry and residue. Remove from the project and properly dispose of the material. Do not allow the grinding slurry to flow across lanes being used by traffic, onto shoulder slopes, into streams, lakes, ponds or other bodies of water, or gutters or other drainage facilities. Do not place grinding slurry on foreslopes.

97

Diamond Grinding

Weather Limitations 1

(602.7)

- Do not place HMA on any wet or frozen surface or when weather conditions prevent the proper handling and finishing of the mixture
- Only place HMA when either the minimum ambient air temperature <u>OR</u> the road surface temperature shown in Table 602-13 is met
- Regardless of temperature, suspend paving operations when specified density can <u>NOT</u> be achieved before temperature of HMA falls below 175°F (165°F for WMA)

TABLE 602-13: MINIMUM HMA PLACEMENT TEMPERATURES							
Paving Course	Thickness (inches)	Air Temperature (°F)			Surface Temperature (°F)		
		HMA	WMA	WMA	HMA	WMA	WMA
			Foam	Chem		Foam	Chem
Surface	All	50	45	40	55	50	45
Subsurface	<1.5	50	45	40	55	50	45
Subsurface	≥1.5 and < 3	40	35	30	45	40	35
Subsurface	≥3	30	30	30	35	32	32

99

Weather Limitations 2 (602.7)

• Example: A contractor needs to pave a 1.5" Surface lift using WMA – Chem. Additive. The air temperature is 37°F & the surface temperature is 48°F. By specification, is this allowable?

Weather Limitations 3 (602.7)

 Example: A contractor needs to pave a 1.5" Surface lift using WMA – Chem. Additive. The air temperature is 37°F & the surface temperature is 48°F. By specification, is this allowable?

I	TABLE 602-13: MINIMUM HMA PLACEMENT TEMPERATURES							
	Paving Course	Thickness (inches)	Air Temperature (°F)		Surface Temperature (°F)			
I			HMA	WMA	WMA	HMA	WMA	WMA
ı				Foam	Chem		Foam	Chem
4	Surface	All	50	45	40	55	50	45
	Subsurface	<1.5	50	45	40	55	50	45
	Subsurface	≥1.5 and < 3	40	35	30	45	40	35
	Subsurface	≥3	30	30	30	35	32	32

37 < 40

48 > 45

101

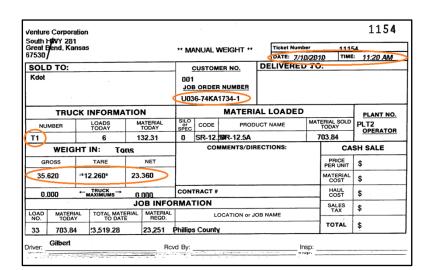
Weather Limitations 4 (602.7)

By specification, **this operation is allowable** because <u>one</u> of the two above criteria is satisfied. As long specified density is reached before mat cools below 165°F (WMA).

			roam	Cnem		roam	Cnem
Surface	All	50	45	40	55	50	45
Subsurface	<1.5	50	45	40	55	50	45
Subsurface	≥1.5 and < 3	40	35	30	45	40	35
Subsurface	≥3	30	30	30	35	32	32

37 < 40

12 > 15


Measurement & Payment 1

- At the end of a production run, waste any material in the silo/storage bin
 - Plant Waste
- Material delivered to the road that is not paved
 - Road Waste
- Either type of wasted material is not paid for.
- Outside Sales

103

Measurement & Payment 2

Measurement & Payment 3 CONTRACT NO. 599116413 WORK TYPE SM-12.5A (PG 64-28) COUNTY PHILLIPS TONS PRODUCED 1,454.51 T PROJECT NO. 36-106 K 7800-01 DATE 08-08-2003 WASTE TK NO. 8767 WASTE TONS 5 T PAY TONS 1,449.51 T LIFT Surface LANE EB STA. 0+00 TO STA. 112.63 T LIFT Surface LANE EB STA. 0+450 TO STA. 0+550 TONS LIFT Surface LANE EB STA. 6+850 TO STA. LIFT Surface LANE EB STA. 0+850 TO STA. LIFT Surface LANE EB STA. 1+035 TO STA. TONS TONS PAY TONS 1,449.51 T PREVIOUS PAY TONS 11,752.12 T INSPECTOR Travis Try CHECKED BY _____

105

HMA Commercial Grade 1

(15-06010)

- Applies if the bid item HMA Commercial Grade is in the contract
- Typically used for small quantities or temporary pavement
 - Temporary crossover
 - Temporary pavement widening
 - Shoo-Fly
- SR 12.5A or SM 12.5A required unless otherwise approved by engineer
- Class A or B, mixture requirements per Table 611-1
- Construction requirements similar to section 602

HMA Commercial Grade 2

- Mixture Acceptance Contractor may select one of the two options below:
 - Aggregate Price Adjustment Virgin Cold Feed Gradations
 - Compare field gradations to single point design values
 - Tolerances based on sieve size, Table 611-3
 - Contract adjustment, deduct only per lot, based on pay factors Table 611-5
 - Form 292 HMA Aggregate Price Adjustment
 - Air Void Price Adjustment
 - Air void testing per section 602, deduct only per lot

107

Break time!

Asphalt Paving Inspection Part 4 – Surface Treatments

In Division 600...

Microsurfacing, Chip Seals, Asphalt Prime Coat, Single & Double Asphalt Surface Treatment, UBAS

1

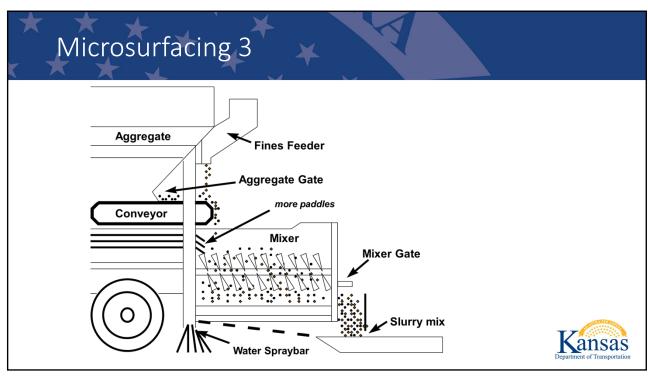
Microsurfacing 1 (Modified Slurry Seal)

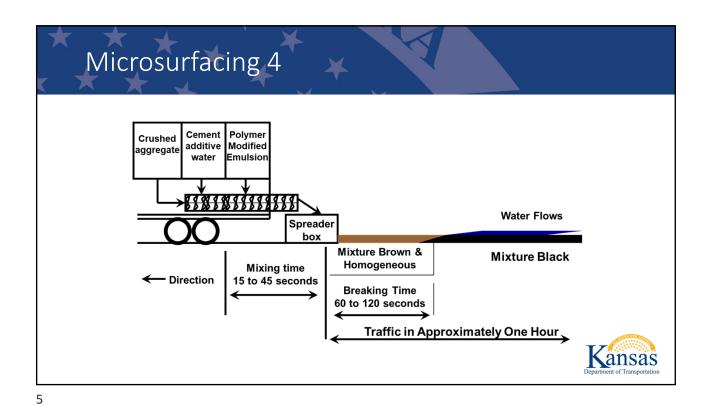
What is it?

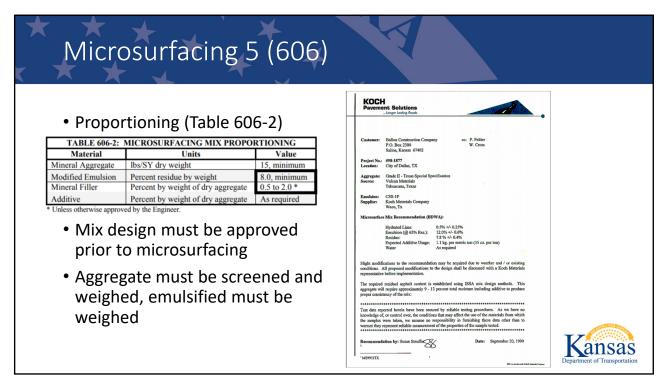
- Seal on existing asphalt comprised of water, asphalt emulsion, crushed aggregate and chemical additives
 - Differs from Slurry Seal because it relies on chemical additives to 'break' as opposed to sun or heat for evaporation

Applicable Specs

- 155.11
- 606


Microsurfacing 2 - Equipment (155.11)

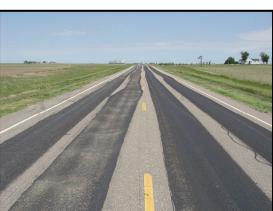

- Mixing Equipment
 - Self-propelled mixing machine
 - Capable of delivering and proportioning materials to revolving multi-blade dual mixer and discharging:
 - Aggregate, mineral filler, water, additives and emulsified
 - Thoroughly mixed product
 - Operate continuously to eliminate joints
 - Individual volume/weight controls for proportioning


- Spreading Equipment
 - Spread uniformly by means of a mechanical laydown box attached to mixer and equipped with paddles to agitate
 - Paddles prevent buildup, lumps or 'setting up'
 - · Lateral movement controls
 - Prevent loss of paving mixture and kept clean of buildup

3

Microsurfacing 6 (606)

• 606.3c Ruts


- Fill ruts/cuts/depressions prior to final surface placement
- Fill ruts less than ½ inch in depth with a full width scratch coat.
- Ruts greater that ½ inch in depth will be filled with a rut box 5 to 6 feet in width.
- Ruts greater that 1 ½ inches require multiple rut box passes.
- When multiple rut passes are required, carry traffic overnight on each rutfilling pass before a subsequent filling pass is made.

7

Microsurfacing 7

Microsurfacing 8

9

Microsurfacing 9 (606)

- Seasonal Limitations
 - May 1 to October 15
 - Do not place when ambient air is less than 50°F, or if it is foggy or raining
 - Do not place if forecast is expected to go below 32°F within 24 hours of placement
- Observation Period
 - If constructed within seasonal limitations, it will be inspected 30 days after completion
 - If seasonal limitations are modified, it will be inspected jointly between May 1 and April 1 of the following year
 - Repairs required for bare areas:
 - In 5% of wheel paths
 - Individual areas ≥10 SQYD
 - Where total SQYD of bare areas is greater than 5% of total microsurfacing

Microsurfacing 10

Kansas
Department of Transportation

11

Microsurfacing 11

Kansas Denartment of Transportation

Microsurfacing 12

13

Chip Seal 1

What is it?

- Application of special protective wearing surface to existing pavement
 - · Asphalt with rock covering
 - Emulsified or Polymer Modified

Applicable Specs

- 155.7
- 608

Emulsified Asphalt:

Suspension of asphalt in water assisted by mild soap solution (water-based asphalt)

Polymer Modified

Added polymers to improve performance of asphalt

Cutback Asphalt:

Asphalt cement and petroleum solvent. Used because they reduce viscosity for lower temperature uses

Chip Seal 2 - Equipment (155.7)

- Self-Propelled Aggregate Spreader
 - Supported by minimum 4 wheels with pneumatic tires
 - Equip with means of applying the larger cover coat materials to the surface ahead
 - Material is deposited uniformly over the full width of asphalt material
- Pneumatic Rollers
 - Covered in 608

15

Chip Seal 3 (608)

- Surface Prep
 - Clean of all foreign material broom surface to remove dust
- Protect adjacent structures & restore any damaged or splattered appurtenances at own expense
- Apply asphalt material according to Table 601-1 (or shown on BOL)
- Use distributor to uniformly apply asphalt at rate shown in plans
- Immediately following the application of asphalt, spread cover material with self-propelled aggregate spreader in quantities designated in plans
- Tires of trucks or spreaders shall not come in contact with fresh asphalt at any time
- Immediately following covering, embed with pneumatic rolling

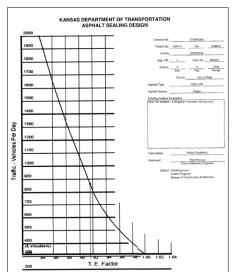
Chip Seal 4 (608)

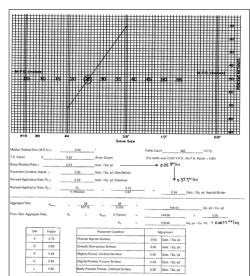
• Aggregates (Table 608-1)

The application rate shown in TABLE 608-1 may be changed with written approval from the Engineer.

	TABLE 608-1: RATES OF APPLICATION FOR CHIP SEAL						
Type	Composition	Aggregate Cu. Yd./Mile 24 foot width*	Asphalt Material Gal/Sq. Yd. Residue*	Asphalt Type**			
CM-A	Sand-Gravel	105	0.20	CRS-1H			
CM-B	Sand-Gravel	135	0.23	CRS-1H			
CM-D	Crushed Sandstone	145	0.27	CRS-1H or RS-1H			
CM-K	Limestone	140	0.24	RS-1H			
CM-L-1	Lightweight	85	0.17	CRS-1H			
CM-L-2	Lightweight	115	0.26	CRS-1H			
CM-L-3	Lightweight	150	0.30	CRS-1H			

^{*}Rates shown are estimated and will be adjusted to comply with actual field conditions


** Asphalt type may be changed with approval of the DME.


- · The above rates are standard application rates. Actual field rates determined by Asphalt Sealing Design, based on:
 - · Roadway surface condition
 - Aggregate gradation median particle size (M.P.S.)
 - Traffic volume vehicles per day (V.P.D.)
 - Asphalt residue rate

17

Chip Seal 5 - Design

Distributor Log at the end...

Chip Seal 6 (608)

Things to look for...

- Joints
 - Start the application on strip of building paper. 3 feet wide and extending at least 1 foot past spray bar length
- Do not spread more asphalt material that can be immediately covered
- Do not allow distributor to "blow"
- · Check and adjust angle of spray nozzles and height of spray bar
 - · Looking for uniform distribution
- Balance between full coverage and bleeding asphalt
 - Do not want to pull cover material up
- Traffic speeds specified
 - 30 MPH on bare pavement, 20 MPH on fresh seal

19

Chip Seal 7 (608)

- Manipulation
 - Minimum 3 self-propelled pneumatic rollers
 - Uniform pressure on all tires, checked every morning
 - Initial rolling within 5 minutes of cover material application (unless temp below 70°F, then 2 minutes)
 - Minimum 3 complete passes, full width covered in one pass by all rollers together
 - · Cure time depends on asphalt used
 - Emulsified (4 hours), Polymer Modified (1.5 hours)
 - Can increase based on traffic's effect on seal
 - Broom loose material after sufficient curing (minimum 1 light brooming before opening to traffic)

Chip Seal 8 (608)

- Seasonal Limitations
 - May 1 through October 15 if using cutback asphalt and ambient air is 60°F and rising
 - June 1 through September 15 if using emulsified, ambient is 60°F and rising and pavement is minimum 70°F
 - June 1 through September 1 if using asphalt cement, ambient is 70°F and rising and pavement is minimum 80°F
 - Do not seal on wet pavement or when it is foggy or rainy
- Observation Period
 - If in accordance with seasonal limitations, 30 day observation period
 - If seasonal limitations are modified, it will be inspected jointly between May 1 and April 1 of the following year
 - Repairs required for bare areas:
 - In 5% of wheel paths
 - Individual areas ≥10 SQYD
 - Where total SQYD of bare areas is greater than 5% of total seal

21

Asphalt Prime Coat (607)

- · What is it?
 - Application of an asphalt material to subgrade or base course
- Broom off all loose materials and clean until free of dust
- When required, apply water (approx. 0.1 gal per sqyd) prior to asphalt material
- Protect adjacent surfaces
- Apply prime coat with distributor ASAP and immediately after final rolling, prior to any traffic
- Maintain and protect until surface course
- Construct between May 1 and October 15, ambient is 60°F and rising and weather is not rainy or foggy

Single Asphalt Surface Treatment (609)

- What is it?
 - · Asphalt prime coat followed by an application of asphalt seal
- Same specs as Asphalt Prime Coat PLUS Chip Seal
 - Minimum 7 times rolled with pneumatic rollers
- Seasonal Limitations follow Chip Seal Specification (608)

23

Double Asphalt Surface Treatment (610)

- · What is it?
 - Asphalt prime coat followed by TWO applications of asphalt seal
 - Follow Specs for Asphalt Prime coat and Chip seal
- Second Seal Coat
 - If asphalt material consists of cutback asphalt, do not apply the second seal coat until 60 days after application of first seal
 - Minimum 7 times rolled with pneumatic rollers

UBAS (Ultrathin Bonded Asphalt Surface) 1

What is it?

- Similar to a chip seal mixed with HMA
 - Uses seal surface (polymer-rich modified emulsion) covered by gap-graded hot mix asphalt
 - Designed so the surface course can drain moisture while sealing and protecting underlying pavement

Applicable Specs

• 613

25

UBAS (Ultrathin Bonded Asphalt Surface) 2

- Quality Control Testing (613.2)
 - Similar to HMA testing requirements
- RAP/RAS is not allowed in UBAS
- Paving Operations
 - Use a transfer device (shuttle buggy, MTV, conveyor, etc...)
 - Use a self-priming spray paver
 - Conform to Section 155.4 PLUS...
 - Equipped with receiving hopper, feed conveyor, asphalt emulsion storage tank, ability to measure EBL volume applied, spray bar and a heated, variable width, vibratory screed
 - Capable of spraying EBL uniformly at specified rate, applying and leveling surface course in one pass
 - Capable of paving at controlled speed 30-100 fpm
 - Equipped so no wheel/other part in contact with EBL prior to HMA application
 - Screed has the ability to crown pavement and extensions can be adjusted vertically

UBAS (Ultrathin Bonded Asphalt Surface) 3

Application

- EBL application according to Table 601-1 or as recommended by supplier
- Apply UBAS at 290-330°F over full width of EBL with heated vibratory screed

Compaction

- Roll within 1-3 passes with tandem steel rollers, minimum 10 tons weight, before material reaches 195°F
- Rollers may not remain stationary
 - At least until mat reaches 160°F. Traffic may be allowed then

Weather Limitations

- Do not place on wet/frozen surface
- Only place when min. 50°F ambient or min. 55°F road surface

27

Distributor Log Handout 1

	Example (Chip Seal)				
Date					
Туре	CRS-1HP	CRS-1HP			
Lane	170 EB DL	170 EB DL			
Start Gallons	2,640	3,800			
End Gallons	1,000	900			
Hot Gallons	1,640				
Temp (F°)	160	160			
Corr. Factor	0.97500	0.97500			
Corr. Gallons	1,599.0				
Dilution (%Asph/%Water)	100/0	100/0			
Gallons Asphalt	1,599.0				
Lbs/Gallon	8.420	8.420			
Tons	6.73				
Accum. Tons	6.73				
Start STA	100+00.	100+00.			
End STA	129+80.	129+80.			
Length (Inft)	2980	2980			
Bar Width (ft)	12	12			
Spray Area (SQYD)	3,973	3,973			
Asphalt Rate (gal/sqyd)	0.402				
% Residue	67%	67%			
Residue Rate (gal/sqyd)	0.270				
Insp.	HDD				

- Hot Gallons (Used Gallons) = Start End
- Temperature (Off of the distributor)
 - Correction Factor found Part V Table 3, 5.10.3
- Corrected Gallons = Hot Gallons x Correction Factor
- Dilution: Contractor may elect to dilute asphalt with water, you will need to ask them. On a chip seal, no dilution therefore 100% asphalt
 - Gallons of asphalt = % asphalt (100 in this scenario) x Corrected Gallons
- Lbs/Gallon: This information comes from Ticket/BOL
- Tons = [(Lbs/Gallon)*Gallons of asphalt)]/2000
 - · Keep track of accumulated tons
 - If these are short rates, keeping a running total

Distributor Log Handout 2

	Example (Chip Seal)		
Date			
Туре	CRS-1HP	CRS-1HP	
Lane	170 EB DL	170 EB DL	
Start Gallons	2,640	3,800	
End Gallons	1,000	900	
Hot Gallons	1,640		
Temp (F°)	160	160	
Corr. Factor	0.97500	0.97500	
Corr. Gallons	1,599.0		
Dilution (%Asph/%Water)	100/0	100/0	
Gallons Asphalt	1,599.0		
Lbs/Gallon	8.420	8.420	
Tons	6.73		
Accum. Tons	6.73		
Start STA	100+00.	100+00.	
End STA	129+80.	129+80.	
Length (Inft)	2980	2980	
Bar Width (ft)	12	12	
Spray Area (SQYD)	3,973	3,973	
Asphalt Rate (gal/sqyd)	0.402		
% Residue	67%	67%	
Residue Rate (gal/sqyd)	0.270		
Insp.	HDD		

· Asphalt rate given in Gallons per Square Yard

- Square yard is area applied (length x width)
- Length = Difference in Stations
 - Reminder: 1 Station = 100 Feet
 - 129+80 100+00 = 29+80 or 2980 feet
- [Length (2980 feet) x Width (Spray bar @ 12 feet)]/9

• % Residue comes from ticket/BOL

- Emulsified asphalt is made of asphalt cement, water and an emulsifying agent
- Residual accounts for the percentage of remaining asphalt

Asphalt Paving Inspection Part 5 – Paving Alternatives

In Division 600...

Cold Recycled Asphalt (CIR), Surface Recycled Asphalt (HIR), Milling

1

Milling 1 (aka Cold Milling)

What is it?

- Tearing up existing pavement
- Generating RAP for use in...
 - HMA
 - Cold/Hot Recycle
 - Maintenance Stockpiling
 - Mixed in aggregate shoulders

Milling 2 (612)

- Automatic grade and slope control
 - Shall operate from traveling stringline not less than 30 feet long
 - Attached and parallel
- If the operating weight exceeds 80,000 pounds, it cannot be tracked across a span bridge
 - Typically, 12' or greater width mills will need to be hauled across
- Must be thoroughly cleaned prior to opening traffic or paving
 - Or within city limits
 - No chunks or debris
- Milled surface may be open to traffic upon approval
 - Typically a note found in the plans

3

Milling 3

Milling 4

Kansas
Department of Transportation

5

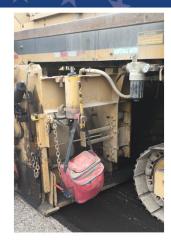
Milling 5

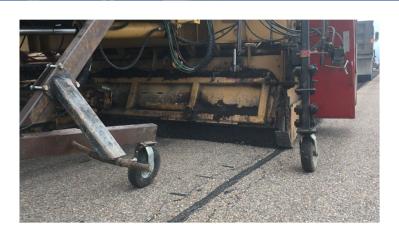
Kansas Department of Transportation

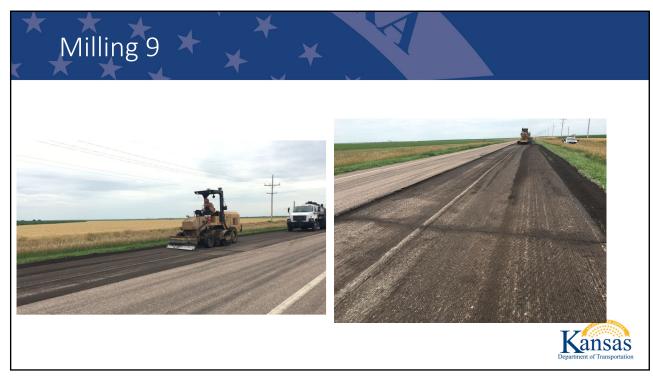
Milling 6

Kansas Department of Transportation

7


Milling 7





Milling 8

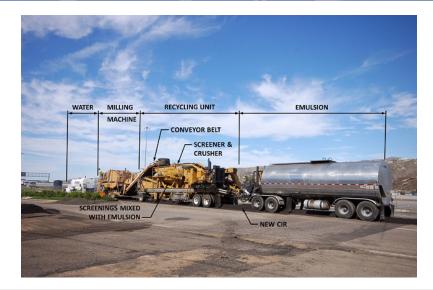
Cold Recycle Asphalt (CIR) 1

What is it?

- Mill up existing asphalt
- Add hydrated lime slurry based upon mix design or as directed
- Add emulsified asphalt based on supplier
- Spread and compact the mixture as specified

Applicable Specs

- 155.9
- 604


13

Cold Recycle Asphalt (CIR) 2

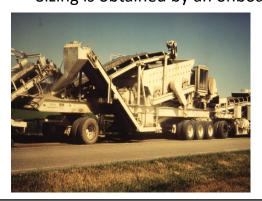
- Milling Operation
 - The pavement shall be milled to the required depth and width in accordance with the requirements shown in the contract/plans
 - Process RAP to required gradation and thoroughly mix with specified amount of binder
 - Water may be added to facilitate mixing
 - · Hydrated lime slurry added during milling
 - Deposit recycled material into a windrow, pick up with MTV and place with paver to avoid segregation
- Sieving done on site prior to mixing and paving

Cold Recycle (CIR) 3 - Train

15

Cold Recycle (CIR) 4 - Train

Cold Recycle (CIR) 5 - Train

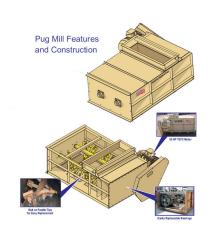


Kansas
Department of Transportation

17

Cold Recycle (CIR) 6 - Construction

- Table 604-1
 - 0% RAP retained on the 1 1/4" Sieve
- Sizing is obtained by an onboard crusher incorporated with the train


Cold Recycle (CIR) 7 - Construction

- Mixing Operations
 - Totalizer for RAP weigh belt
 - Totalizer for Emulsion Pump
 - Emulsion % based on RAP weigh belt
 - · Emulsion incorporated through a pugmill
 - Multiple mix designs may be necessary

19

CIR 8 - Mixing Operations

Kansas

Cold Recycle (CIR) 9 - Construction

- Paving Operations
 - Mix to the paver immediately after mixing Emulsion in
 - Paver remain within 150 feet of the mixing unit
 - Suspend production if these requirements are not met
- Compaction and Density
 - · Start rolling within 30 minutes of paving
 - Finish rolling within 1 hour of milling
 - Compact to minimum 97% target density
 - Minimum temp of 50°F
 - Significant changes may require a new test strip or roller sequence
 - i.e. mix proportions, weather conditions, etc...

21

Cold Recycle (CIR) 10 - Construction

- Test Strips and Roller Sequences to determine target density
 - Minimum 2 Rollers per project
 - Minimum 1 double drum steel roller and 1 pneumatic roller
 - Determine optimal passes of rollers
 - Lift depth shall be representative of the requirements within Contract Documents
 - Test strip shall remain in place
- Weather Requirements
 - Ambient air = 50°F and rising
 - No moisture (rain, drizzle, fog, etc...)
 - No freezing within 48 hours of placement unless otherwise approved

Cold Recycle (CIR) 11 - Construction

Kansas
Department of Transportation

23

Surface Recycled Asphalt (HIR) 1

What is it?

- Paving train with multiple heaters and mills
- Slowly heat up pavement and mill into windrow
- Add Asphalt Rejuvenating Agent (ARA) to existing material
- Repave immediately

Applicable Specs

- 155.8
- 605

Surface Recycled Asphalt Construction (HIR) 2

- Hot In-Place Recycle (HIR)
 - · Preheaters, tunnel heaters
 - · Infrared heaters, radiant heaters
 - Open flame heaters
 - 190°F to 300 °F prior to paving
 - Minimum 190 °F behind the paver
 - Uniform temperatures across the mat
 - 30 °F within 2 feet, 50 °F within 10 feet
 - · One hour to comply with temperature requirements

25

Surface Recycled Asphalt Construction (HIR) 3

- HIR
 - Flaming pavement or windrow
 - Intermittent/occasional
 - · Self extinguish within 10 seconds
- Scarify/Hot Mill Pavement
 - Depth from Contract Documents
 - Depths greater than 1"
 - Maximum removal per pass = ¾"
 - Existing pavement removed at uniform depth across the lane
 - Windrow scarified/hot milled material for subsequent heating passes

Surface Recycled Asphalt Construction (HIR) 4 (605)

Kansas
Department of Transportation

27

Surface Recycled Asphalt Construction (HIR) 5 (605)

Kansas

Surface Recycled Asphalt Construction (HIR) 6 (605)

29

Surface Recycled Asphalt Construction (HIR) 7 (605)

Surface Recycled Asphalt Construction (HIR) 8 (605)

Kansas
Department of Transportation

31

Surface Recycled Asphalt Construction (HIR) 9 (605)

Kansas Department of Transportation

HIR Train 10

33

HIR 11 - ARA (Asphalt Rejuvenating Agent)

- Added uniformly to the heated material
- Added ONCE, just before the paver

Surface Recycled Asphalt Construction (HIR) 12

- Process Control
 - Depth Checks (KT-47)
 - Elevation differences checked using a level or transit
 - Use a calibrated stab stick
 - 3-Point moving average
 - Adjustments made per specification for failing 3 Points in comparison with plan depth
 - · Example to follow

35

Surface Recycled Asphalt Construction (HIR) (605) 13

Kansas

Surface Recycled Asphalt Construction (HIR) 14

- Paving and Compaction
 - Standard paving practices
 - Density determined from approved rolling procedure
- Typically followed by seal coat
 - Chip seal, asphalt seal, microsurfacing, UBAS...
 - · HIR must cure minimum 1 week prior to surfacing

37

Surface Recycled Asphalt Construction (HIR) (605)

Surface Recycled Asphalt Construction (HIR) (605) 16

39

Surface Recycled Asphalt Construction (HIR) 17

- Weather and Seasonal Limitations
 - No fog or rain
 - May 1 to September 30
 - Meet minimum temperature requirements as shown in table 605-2 One requirement must be met

TABLE 605-2: MINIMUM HIR TEMPERATURE REQUIREMENTS		
Existing Surface Type	Ambient Air Temperature (°F)	Road Surface Temperature (°F)
On HMA Surface	50	55
On Asphalt Seal Surface	55	60

END

- Questions?
- Know where things are at in the spec!

