

Pile Driving Inspection Workbook

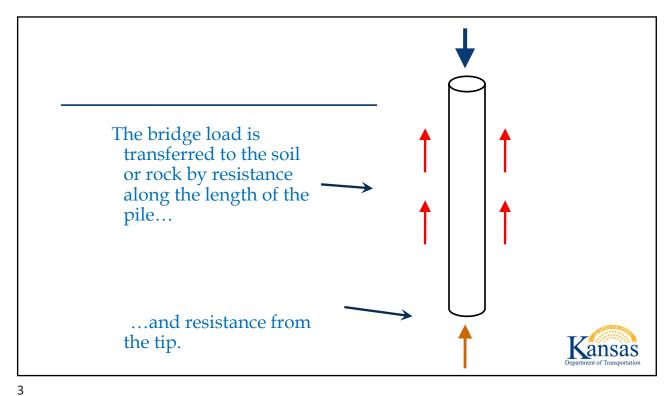
Certified Inspector Training Program

Pile Driving Inspection Certification Workbook

Table of Contents

Click on the section name below to be taken to the correct page.

- 1. Introduction
- 2. Driven Pile Types
- 3. Pile Driving Equipment
- 4. Plan Sheets and the Geology
- 5. The Pile Driving Formula and Problems with Dynamic Formulas
- 6. Record Keeping Form 217
- 7. Welded Pile Splices
- 8. Test Piles
- 9. Test Pile (Special) and Restrike Testing
- 10. Inspector's Role
- 11. Field Problems
- 12. KDOT Standard Specifications



This class is concerned with the installation of driven pile.

Driven pile are hammered into the ground, where they develop resistance from the soil or rock.

Piles which get most of their resistance from friction along the side are commonly called friction piles.

Piles which get most of their resistance from the tip are referred to as end-bearing piles.

5

Pile foundations are used for bridges in two general ways:

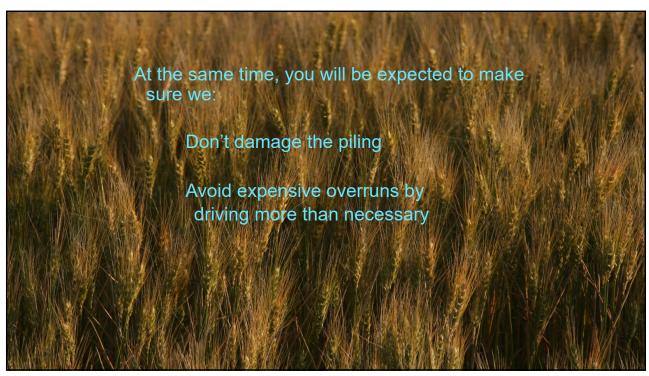
1) Abutments of most KDOT bridges

Current KDOT design practice prefers piling for abutments. Pile abutments tend to flex better with changes in temperature, putting less strain on the spans.

Pile foundations are used for bridges in two general ways:

2) Both Abutments and Piers of bridges in many parts of the state.

In central and western Kansas, bedrock is often too deep to use spread footings or drilled shafts.


This means you will be driving piles:

to a required resistance (usually)

Or to a predetermined depth (occasionally, to get below a certain elevation in case some of the soils get scoured away during a storm)

S

Unfortunately...

There is a complex interaction
between the pile and the
surrounding soil. And so things
can get complicated in the field.

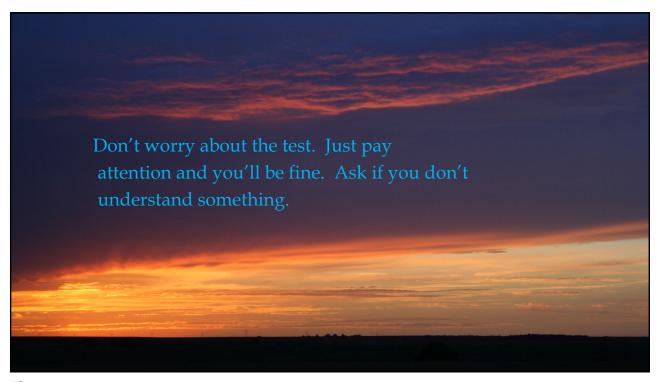
Dolla Dolla Billz, y'all !!

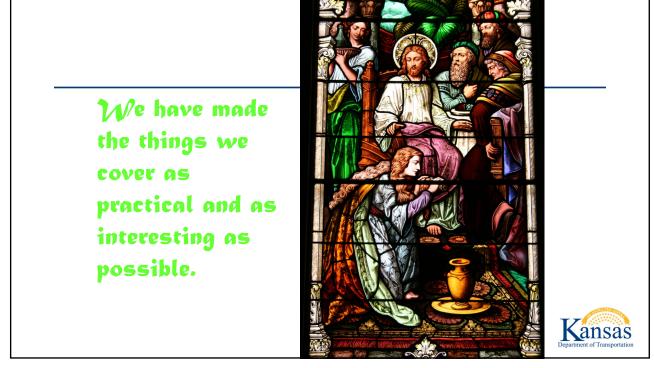
But if it was easy, anyone could do it. Then they wouldn't have to give us so much money.

13

Knowledgeable and diligent construction supervision and inspection are vital to proper installation of piling.

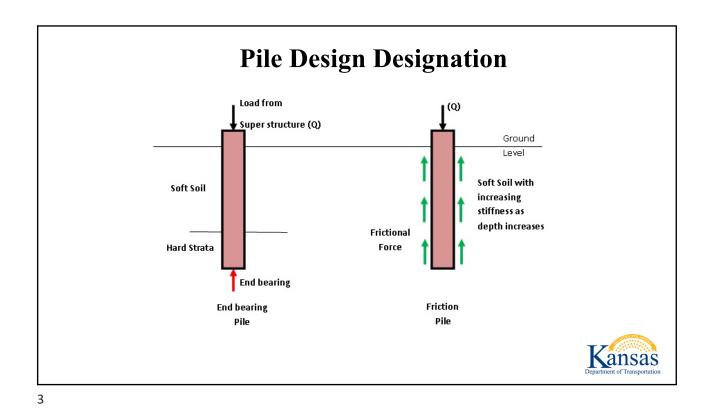
So what are we trying to learn here?





A few words about "bearing"....

- 1. BEARING
- 2. LOAD
- 3. RESISTANCE



General Pile Types

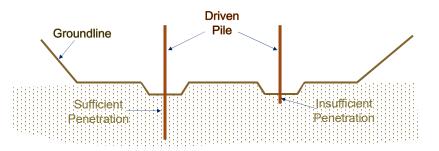
- >Foundation piles
 - ➤ Structural Support
- **≻Sheet pile**
 - > Retention

➤ Pile Bents

≻Pile Groups

≻Pile Bents

- ➤ Pile extends into the substructure
- ➤ Usually a single row of piles
- ➤ Encased in concrete wall



5

Pile Arrangement

▶Pile Bents cont.

➤ Pile within the bents shall penetrate not less than 1/3 the unsupported length or not less than 10 feet into hard cohesive or dense granular material

- ➤ Pile groups
 - Piles are driven to bearing in groups
 - ➤ Usually 6 or more per group, 9 common
 - ➤ Cutoff elevation is below ground
 - ➤ And usually below scour line

7

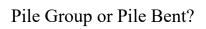
Pile Arrangement

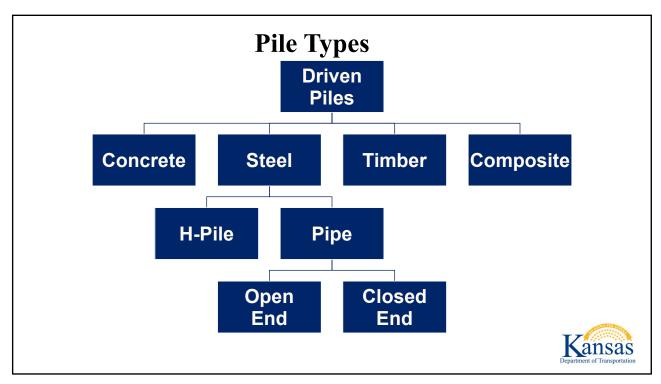
- ➤ Pile groups cont.
 - Pile cap is constructed on top of the group
 - ➤ Pier column built on top of pile cap to support the superstructure

9

Pile Arrangement

Pile Arrangement





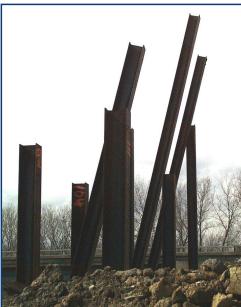
Timber Piles

Only used for False Work, which is not inspected by KDOT

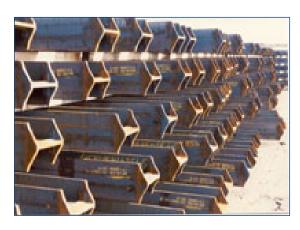
19

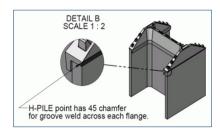
H-Pile

- ➤ Most common pile type used by KDOT
- ➤ Typical lengths range from 15 to 130 feet
- ➤ Typical design loads 45 to 225 tons
- ► Material Specs: $F_y = 50$ ksi
- Suited for either end or friction bearing



Battered Pile K-4 over Delaware River Valley Falls, Kansas

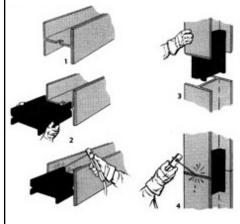




H-Pile With Tips

- ➤ Embedding into hard bedrock
- ➤ Encountering obstructions ➤ Help protect end of pile

23


Splicing H-Pile

- ➤ Used to add pile length
- ➤ Certified Welder
- ➤Butt weld with no plate
- ➤ Grind both ends of pile to form a bevel recess
- Square and level two pile ends
- ➤ Weld all the way around the pile with a full penetration welds

H-Pile Splice

KDOT does NOT approve of this method

25

H-Pile Advantages

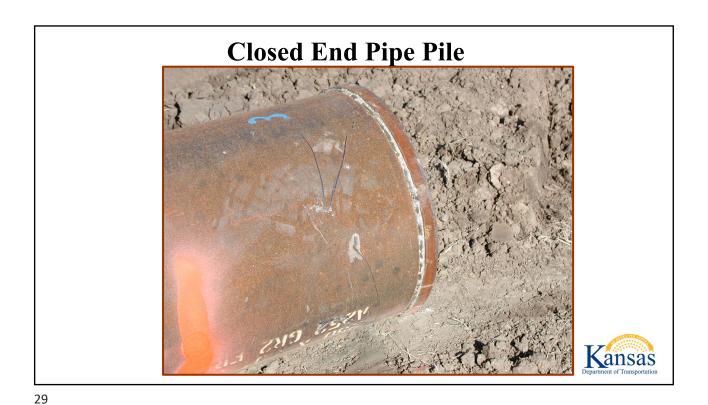
- > Available in Various Lengths and Sizes
- ➤ Easy to Splice and to Cutoff
- ➤ High Capacity
- ➤ Close Spacing
- ➤ Low Soil Displacement
- ➤ Deep Penetration

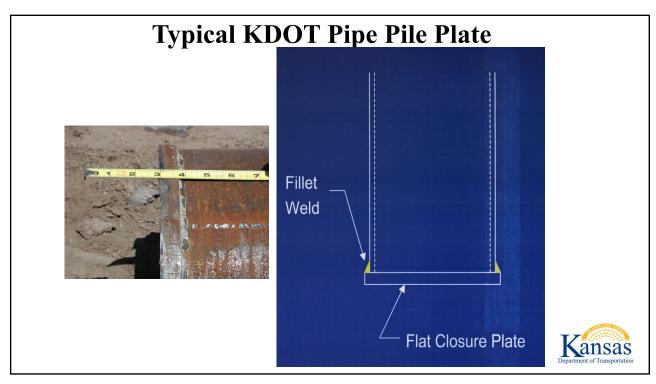
H-Pile Disadvantages

- ➤ Vulnerable to Corrosion When Exposed
- Can Deflect Easily if Obstructions Are Encountered
- Not Recommended as Friction Pile in Granular (sandy) Soils

27

Closed End Pipe Pile


➤ Typical Lengths: 15 to 120 feet

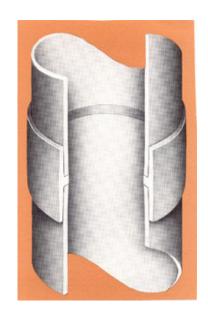

Material Specs: $F_y = 45 \text{ ksi}$

➤ Typical Design Loads 40 to 300 tons

Closed End Pipe Pile Using Conical Points

fit point for pipe piles. swages pipe to a friction so welding is not required.

Rib reinforced point driving to deep point difficult soils.


31

Closed End Pipe Pile

Pipe Pile Splice

Splicing Rings---KDOT Does NOT Use

33

Usual KDOT Pipe Pile Splice

- ➤Butt weld with no plate
- ➤ Grind both ends of pile to form a bevel recess
- ➤ Square and level two pile ends
- ➤ Weld all the way around the pile with a full penetration weld

Pipe Pile Advantages

- Available in Various Lengths, Diameters & Wall Thickness
- ➤ Easy to Splice
- ➤ High-Capacity Potential
- ➤ High Bending Resistance Where Unsupported
- ➤ Length is Loaded Laterally

35

Pipe Pile Disadvantages

- ➤ Vulnerable to Corrosion
- ➤ Could Hinder Required Penetration Depth
- ➤ Susceptible to Bending or Mushrooming at Head
- ➤ High Soil Displacement

Concrete Piles Overview

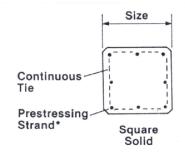
• Typical Lengths: 30 to 130 feet

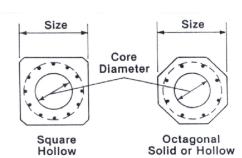
• Design Loads: 45 to 500 tons

Kansas
Department of Transportation

37

Concrete Piles


Concrete Piles



41

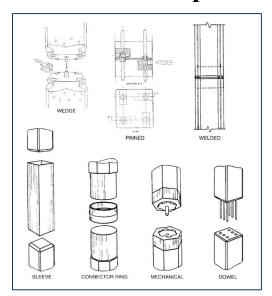
Concrete Pile Detail

Size: 10" and up

20 to 36" could have 11 to 18" hollow

10 to 24" could have 11 to 15" center hollow center

Concrete Pile Cushion



43

Concrete Pile Splice

Concrete Pile Splice

24 inch octagon

45

Concrete Pile Splice

30 inch square Male/Female ends

Concrete Pile Damage

47

Concrete Pile Advantages

- ➤ High load capacity
- Can be made for corrosion resistance
- ➤ Hard driving possible
- Cylinder piles suited for bending resistance

Concrete Pile Disadvantages

- ➤ Relatively high breakage
- ➤ Unless pre-stressed, vulnerable to handling damage
- ➤ Considerable soil displacement
- ➤ Difficult to splice
- ➤ High initial cost

49

Composite Piles

- >Two different materials
- ➤ Good qualities are taken advantage of
- ➤ Used in special circumstances
- ➤ Preferential Use
 - **≻**Geology
 - **≻**Structure
 - **▶** Durability
 - **≻**Cost

Composite Pile Variations

- ➤ Concrete and H-pile
- ➤ Steel pipe and H-pile
- ➤ Steel pipe and concrete
- ➤ Concrete filled pipe

51


Composite Pile Variations Cont.

- **≻**Fiberglass
- >Fiberglass shell filled with concrete
- ➤ Corrugated shell and timber
- ➤ Numerous others

Pipe & H-pile Composite

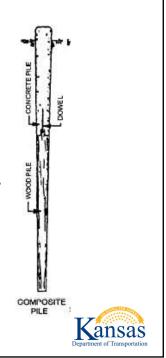
53

Composite Piles

- ➤ Typical Lengths 50 to 200 feet
- ➤ Maximum Design Stress: Dependent upon pile material
- ➤ Design Loads 30 to 200 tons
- ➤ Weakest material governs allowable stresses and capacity

Composite Piles

- Advantages:
 - May be applied in unusual design or installation situations
 - > High capacities possible but dependent on materials
 - ➤ Could reduce foundation cost
 - ➤ Some types offer corrosion protection



55

Composite Piles

- Disadvantages:
 - ➤ May be difficult to splice
 - ➤ May be difficult to attain good joint between materials
 - ➤ Vulnerable to decay above water unless treated

Other Types of Driven Pile

57

Tapertube Piles

Mono Tube Pile

59

Cylinder Concrete Pile

Spin Fin Pipe Pile

61

Questions?

The task of successfully installing piles involves selecting the most cost-effective equipment to drive each pile to its specified resistance or depth without damage in the least amount of time.

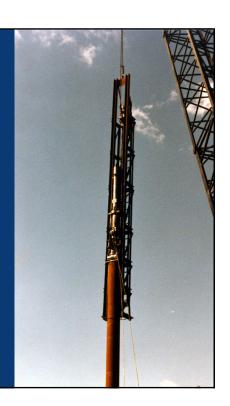
The Leads

3

Hold and guide the hammer

Keep the hammer and pile aligned during driving

Brace long piles until they are driven enough to support themselves


Swinging Leads

Swinging Leads are widely-used because they're:

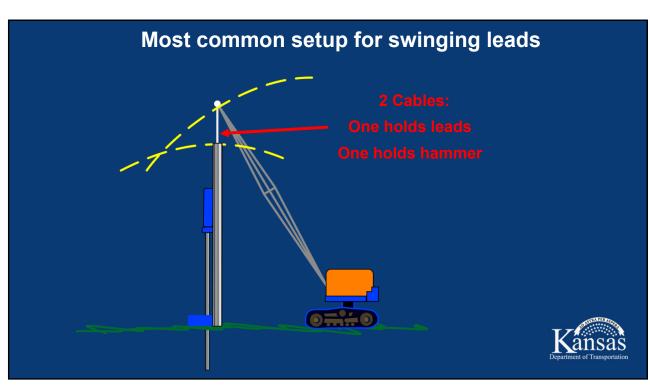
Simple

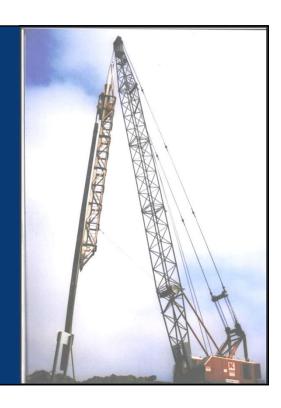
Lightweight

Low cost

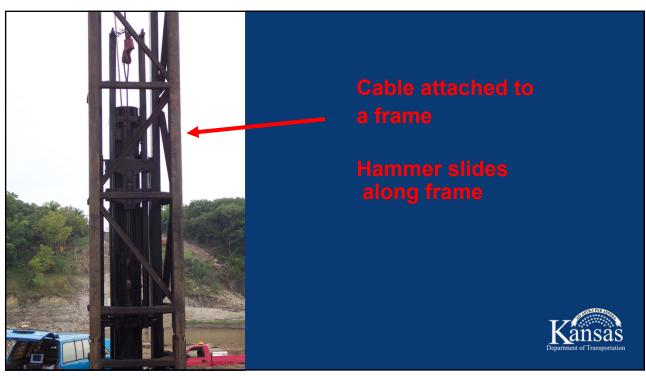
5

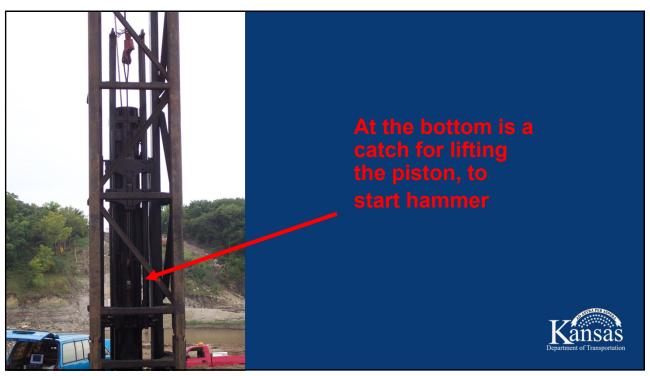
Swinging Leads 1


Swinging leads can be moved easily to align the hammer and the pile head, without moving the crane


Swinging Leads 2

Swinging leads are lightweight, which gives the crane a large operating radius. In other words, the contractor doesn't need to move the whole crane for every pile.




Crane With Swinging Leads

C

For years and years, KDOT contactors could leave swinging leads hanging in the air

It helps with hammerpile alignment, and is also a safety matter

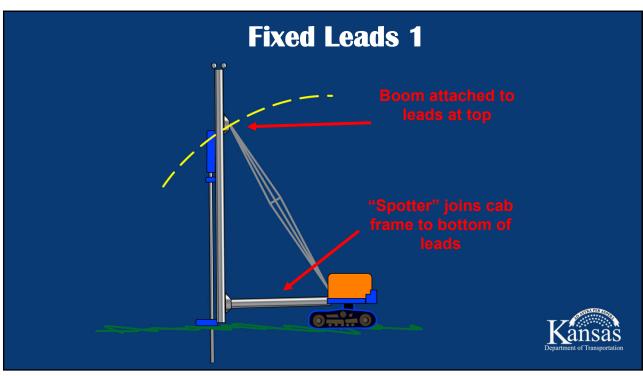
15

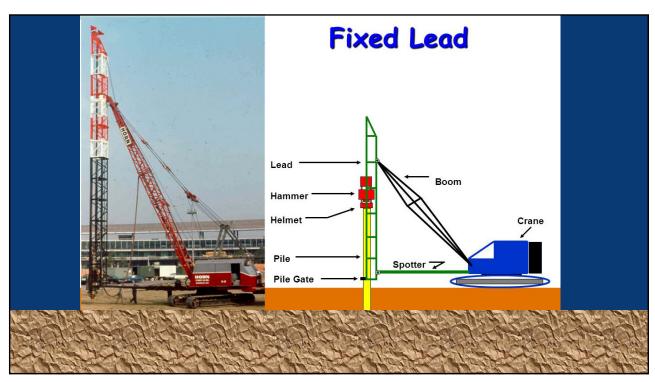
This is an extreme example from summer 2013.

Long piles, short leads, Western winds.....

Lots of alignment trouble.

This is from 2015





Fixed Leads

Fixed Leads are attached to the crane boom, and have a brace running from the bottom of the leads to the crane frame.

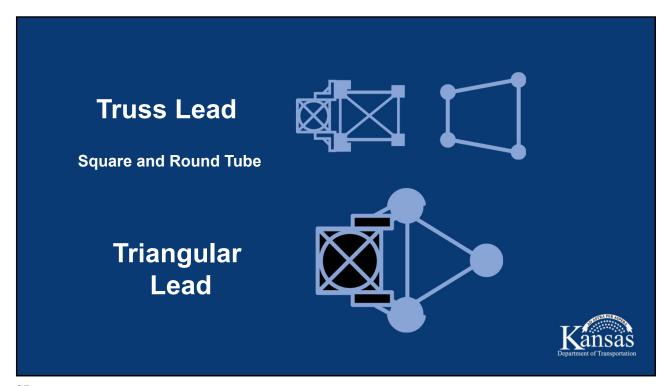
Fixed Leads 2

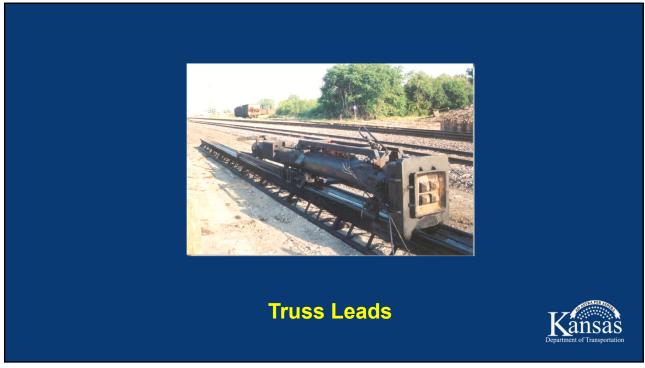
Fixed leads hold the pile in a more true alignment during driving, but require much more time to set up.

Fixed Leads 4

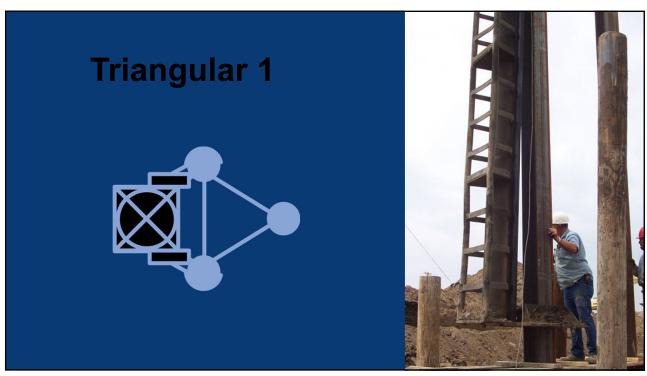
Fixed leads are used for large piling on large projects.

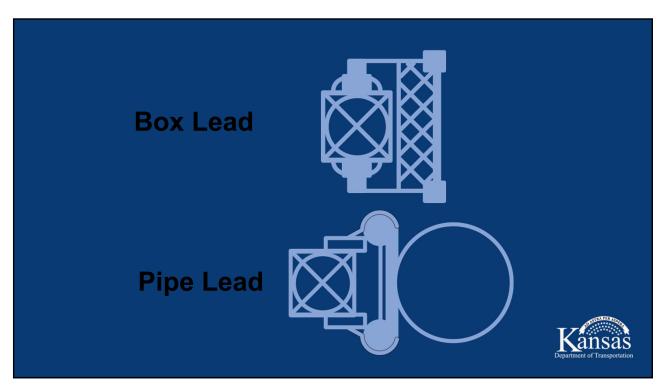
You will rarely see fixed leads on Kansas bridge projects

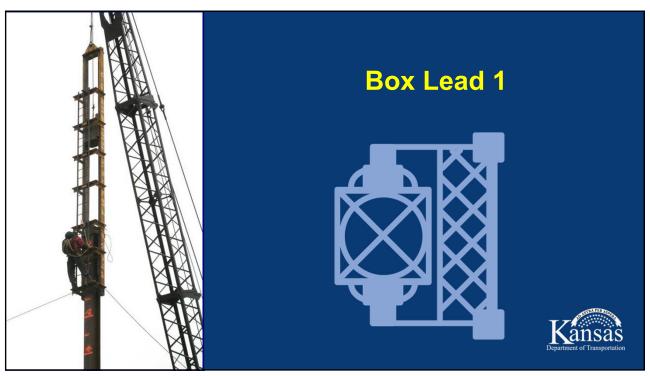


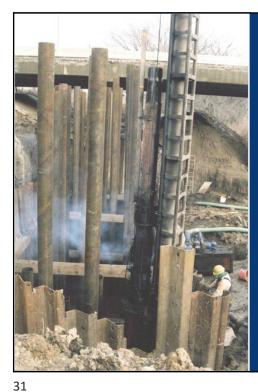

23

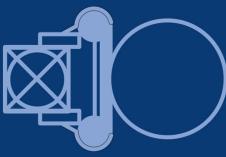
Common Types of Leads

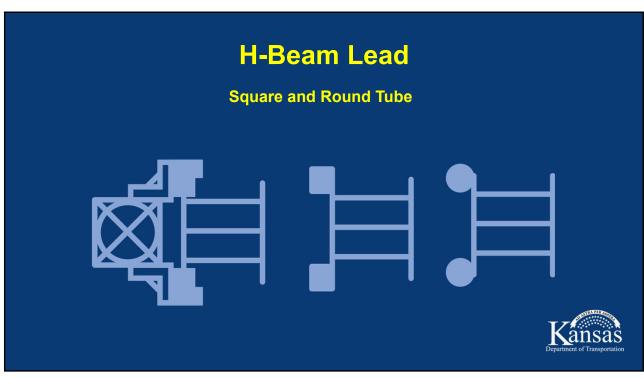

Truss
Triangular
Box
H-Beam
Pipe

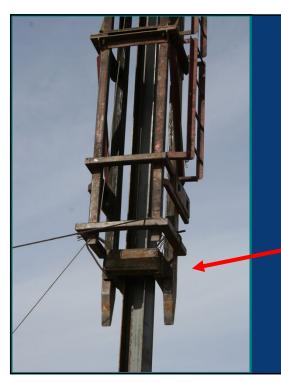




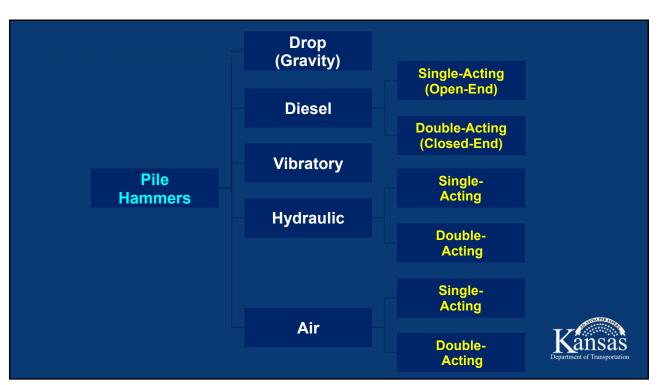








Pipe Leads With Ladder Frame



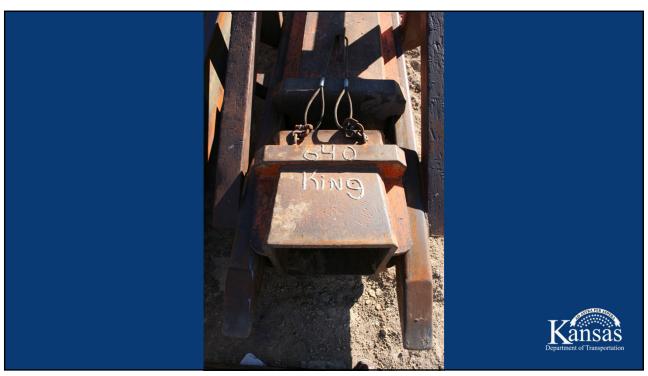
Pile Gate

At bottom of leads

Used to keep lower portion of the pile centered in the leads

Drop (Gravity) Hammer

Concept has been used for thousands of years


Suitable for all types of piling except concrete

Very high dynamic forces can break concrete piling in easy driving if drop is not controlled

Drop (Gravity) Hammer

Cheap to Buy

Cheap and easy to maintain

39

Problems with using gravity hammers

If they're cheap, why don't we use them everywhere?

They're slow

Low productivity
(Only 4 to 8 blows per minute on average)

Also

It can be hard to control the fall height of the weight

On KDOT projects, mainly used to start pile

41

Drop (Gravity) Hammer

You will occasionally still see all piling on a bridge driven with a gravity hammer

Usually short pile stopping on a hard limestone or sandstone

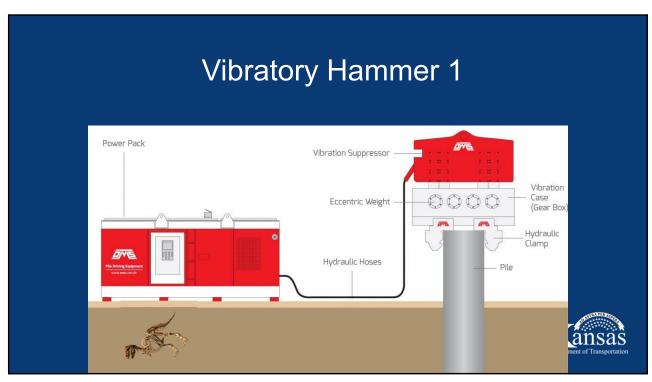
Vibratory Hammer

45

Vibratory Hammer

Don't require leads

Fastest way to install a pile


12 to 30 pulses per second—eccentric weights

High initial cost

High maintenance cost

Needs a separate power supply—runs on electricity or hydraulics (usually hydraulics)

Vibratory Hammer

Suitable for steel H-pile, pipe pile, and sheet pile.

No good for concrete piles. Not at all.

A vibratory hammer would shake apart a concrete pile in about 3 seconds.

Vibratory Hammer

Suitable for end-bearing

Not recommended for friction piles

Very useful in granular soils

Not effective in stiff, clayey soils

Can be used for driving or pulling piles

49

Vibratory Hammer

How do you know when to stop it?

Must use another method to confirm pile capacity

Single-Acting (open-end) Diesel Hammer

Suitable for all types of pile

40 to 60 blows per minute

Carry their own fuel—they power themselves

Stroke of the piston is directly related to pile resistance

51

Single-Acting (open-end) Diesel Hammer

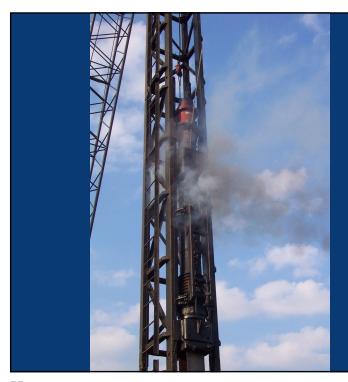
Expensive to buy

Fairly easy to maintain

Pollutes the air and gets diesel fuel all over you

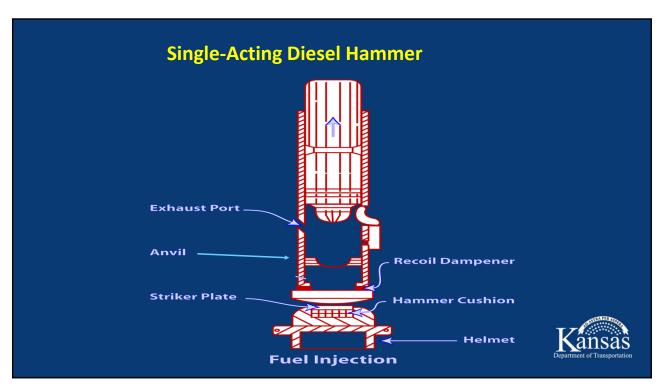
Low blows per minute at high pile resistances

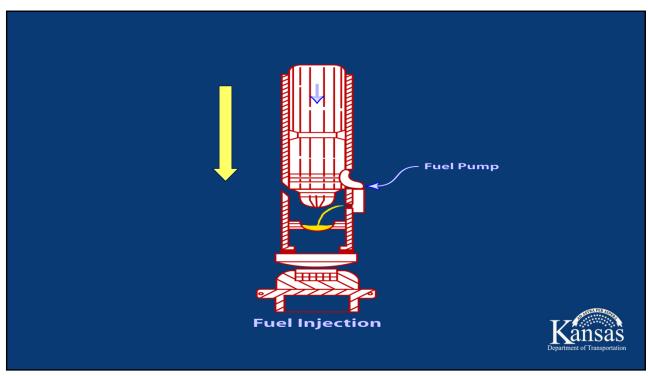
Most popular hammer on KDOT projects

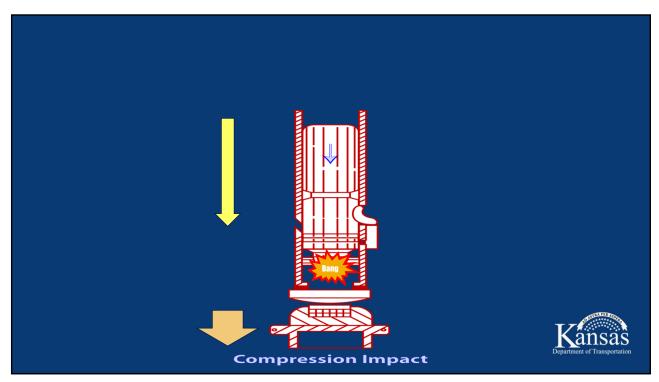

Most diesel hammers on our projects carry between 5 and 20 gallons of fuel.

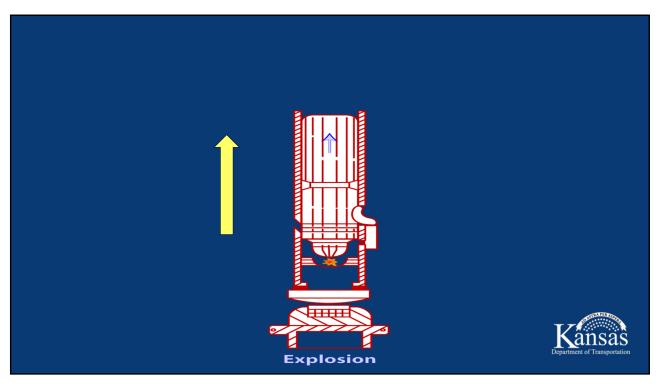
The capacity is such that a hammer can work all day on one tank.

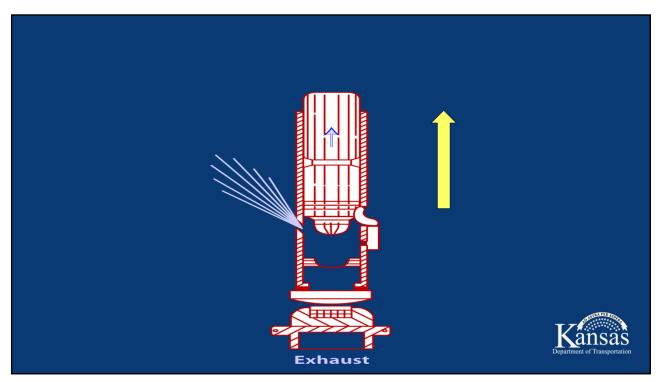
They also carry lubricating oil. The two tanks are side-by-side.

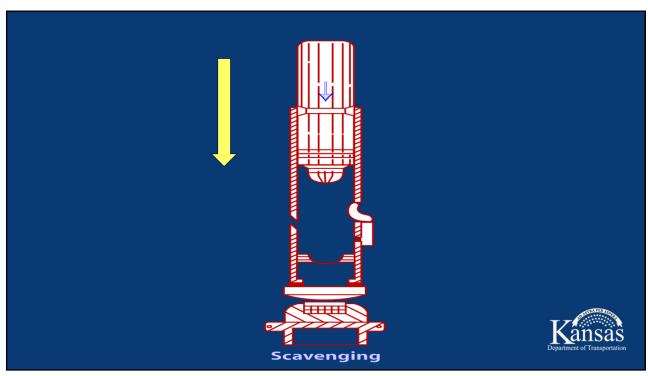


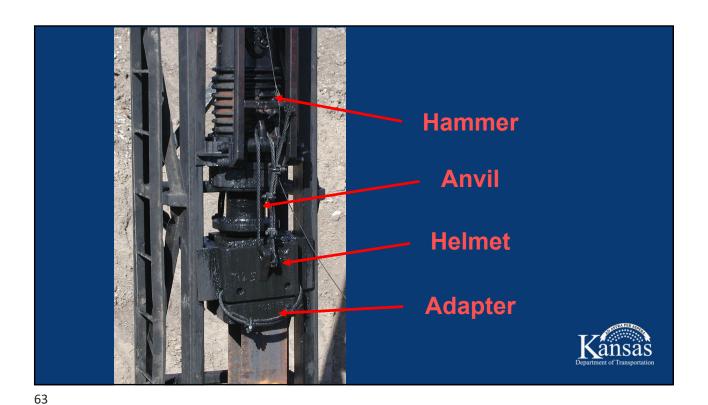


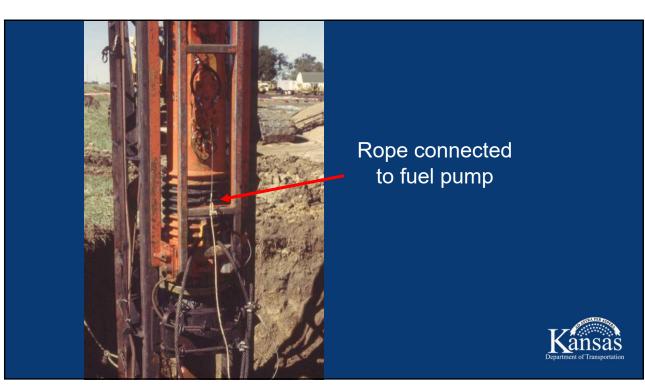


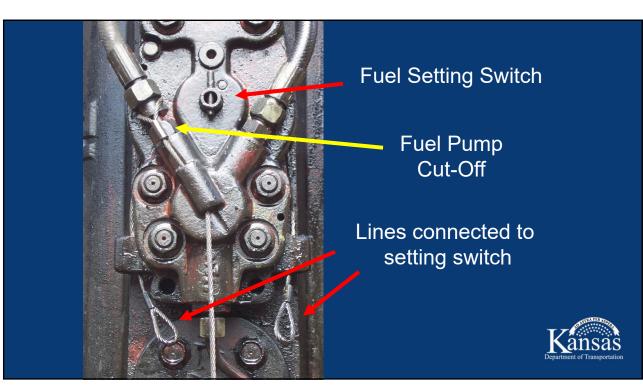


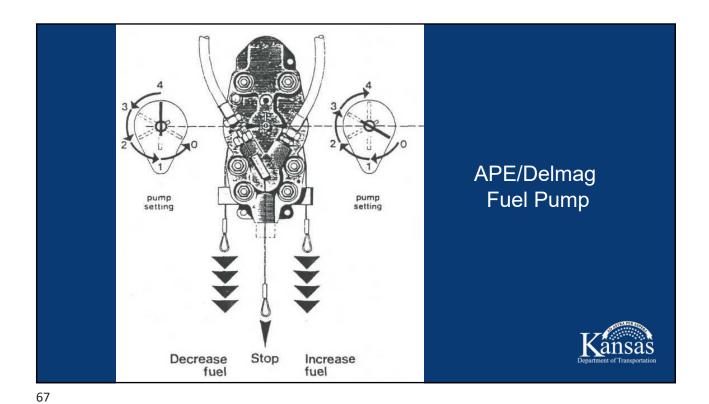


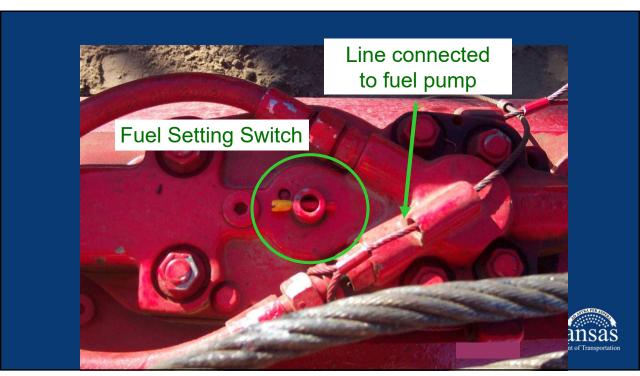


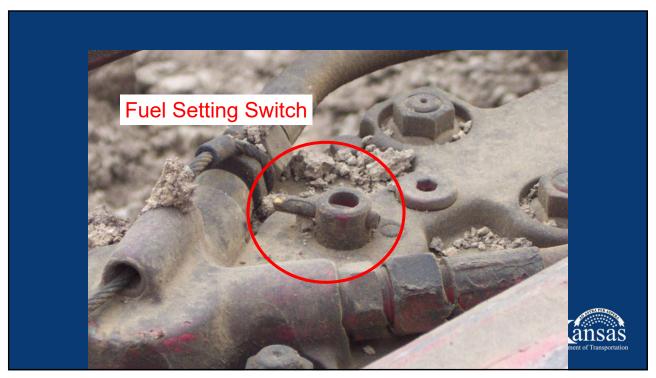











Rope connected to fuel pump

Range of Energy per Blow, by Pump Setting:

Example: Delmag D19-42

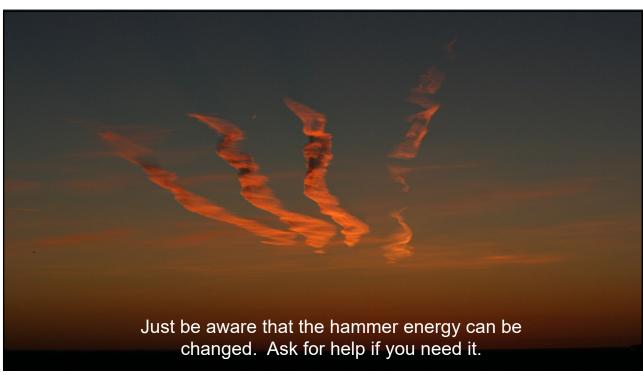
Position 4: 100 % = 42,800 ft-lbs

Position 3: 88 % = 37,660 ft-lbs

Position 2: 67 % = 28,680 ft-lbs

Position 1: 48 % = 20,540 ft-lbs

71


Sometimes a contractor will drive different size pile or drive to different resistances with one large hammer. He will adjust the fuel setting accordingly.

You also must be careful with concrete piles and may want to use a lower fuel setting to control the hammer energy

Piston at top of rebound

Piston at top of rebound 1

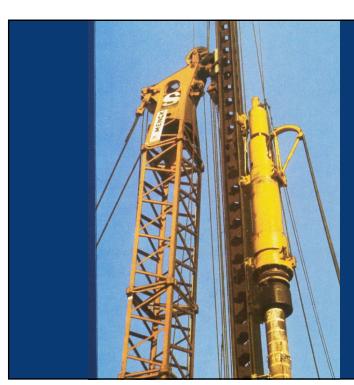
79

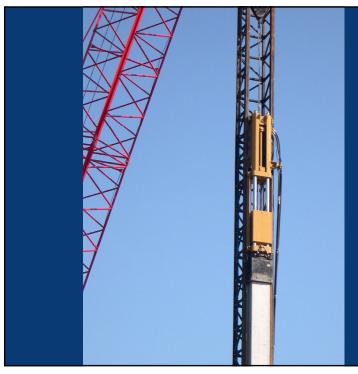
Hydraulic Hammer

Suitable for all types of pile

30 to 50 blows per minute (single-acting)

40 to 90 blows per minute (double-acting)


Energy is adjustable


Hydraulic Hammer

Hydraulic Hammer 1

Hydraulic Hammer 2

83

Hydraulic Hammer

Double-acting can be used for underwater driving

Expensive to buy

More complex maintenance than other hammers

Must use another method to confirm pile capacity

Hydraulic Hammer

Not allowed on KDOT projects

Can't stop it fast enough

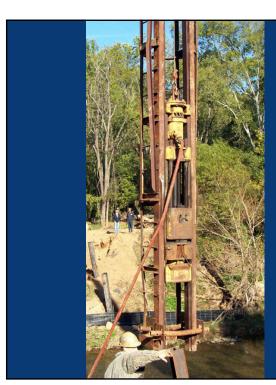
85

Air Hammer

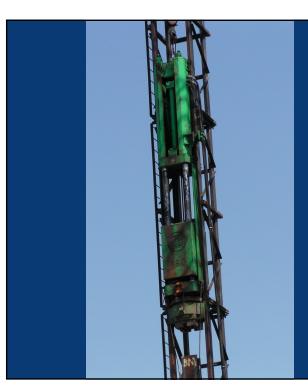
Suitable for all types of pile

35 to 60 blows per minute (single-acting)

95 to 300 blows per minute (double-acting)


Double-acting can be used for underwater driving

Air Hammer

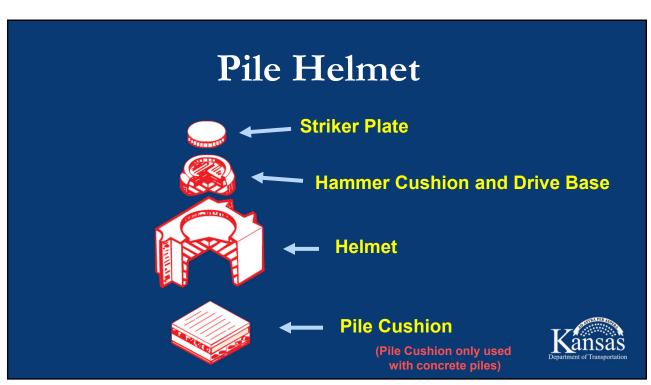

Air Hammer 1

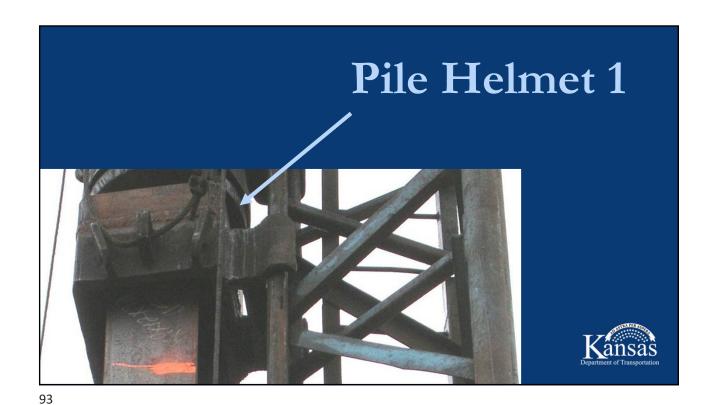
Air Hammer 2

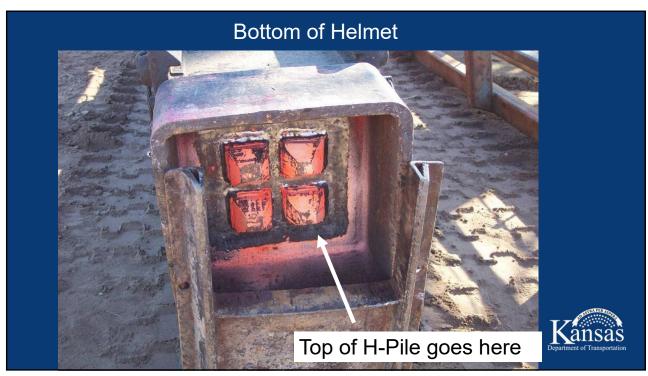
Air Hammer

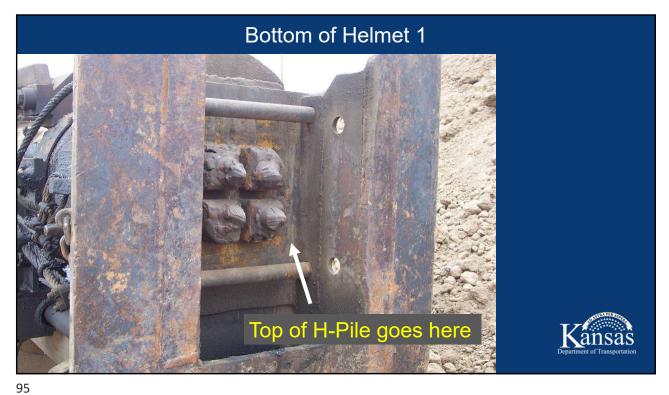
Air Hammer

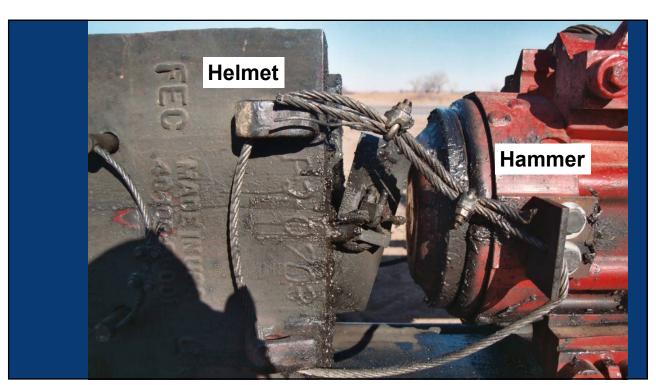
Only moderately expensive to buy

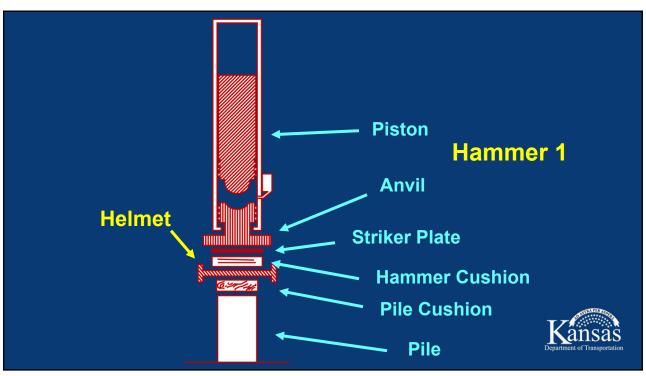

Fairly easy to maintain


Need air compressor to run it


Heavy compared to most diesel hammers


Rarely seen on KDOT projects

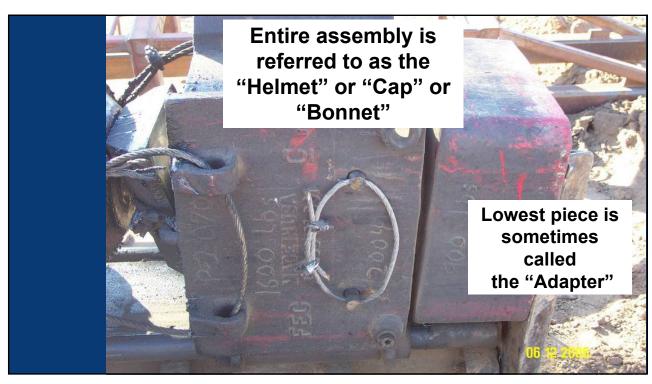


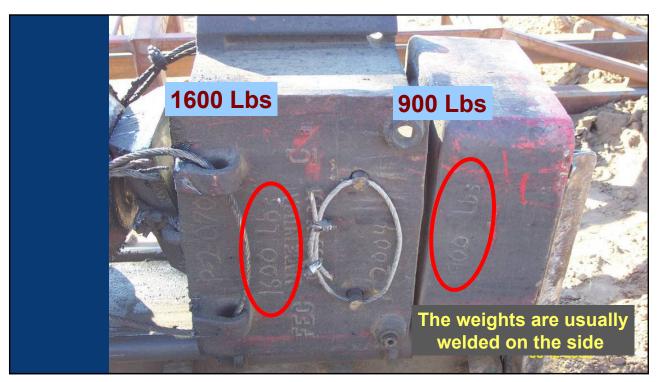


The bearing formula asks for the weight of the cap and anvil.

The "cap" is the pile helmet.

The "anvil" is the lowest piece of the hammer.





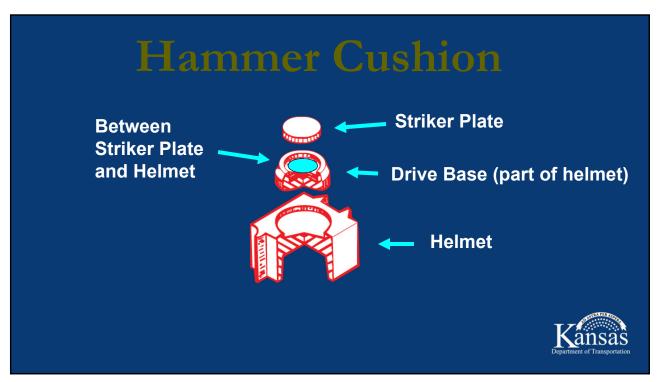
Normally, we call this piece the Helmet, because "pile cap" is also a structural term.

We don't need to confuse things any more than they already are.

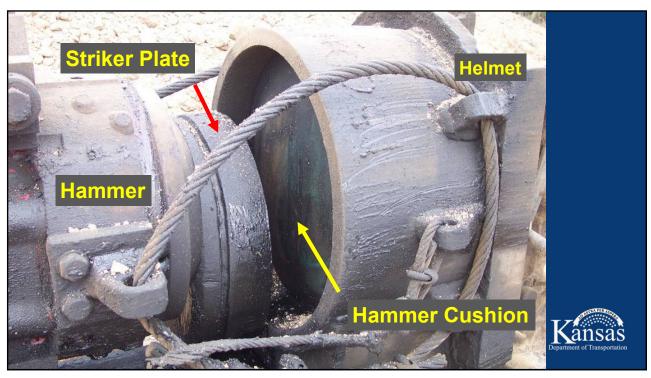
Hammer-helmet-pile alignment must be maintained, especially when driving concrete pile and thin-walled steel pipe piles.

Hammer Cushions

A hammer cushion is used between the hammer and the helmet to absorb some of the impact shock. This protects the hammer.



103


Sometimes also called a "cushion block"

Worn-out hammer cushions cause bad things to happen...

Damage to the hammer, helmet or even the pile itself

Result in lower transferred energy to pile

Can result in increased bending stresses on pile

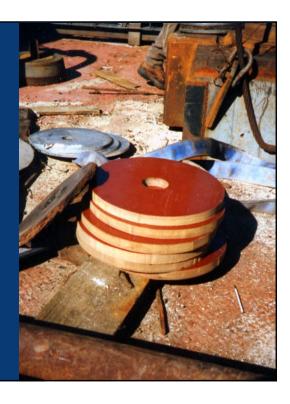
Acceptable Hammer Cushion Material

Micarta (phenolic fiber and aluminum)
Replace when it starts to powderize



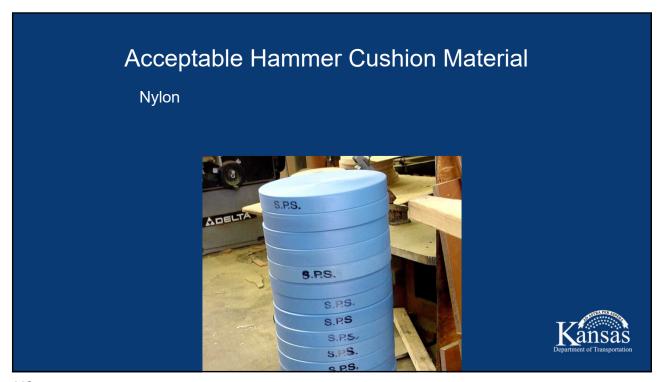
109

Acceptable Hammer Cushion Material


Micarta and Aluminum

Acceptable Hammer Cushion Material

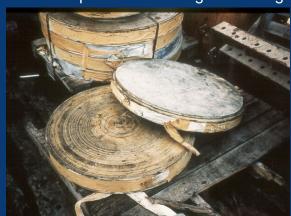
Reinforced Phenolic Resin


111

Acceptable Hammer Cushion Material

Nylon (usually blue)

Replace when you see horizontal cracks (vertical cracks are OK)



Acceptable Hammer Cushion Material

Hammortex (a reel of fiber or Kevlar sheeting backed with aluminum)

Replace when it begins disintegrating

Acceptable Hammer Cushion Material

Urethane materials
Polymer materials

Aluminum may be present in laminations in hammer cushions, but only acts to transfer heat out of the cushion. This prolongs its life.

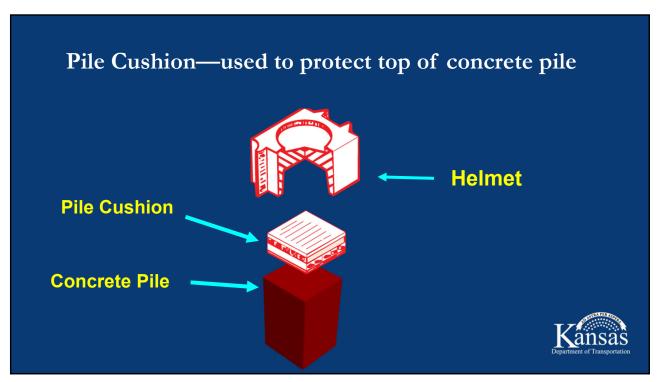
Wood, wire rope, and asbestos are *not* acceptable as a hammer cushion on KDOT projects.

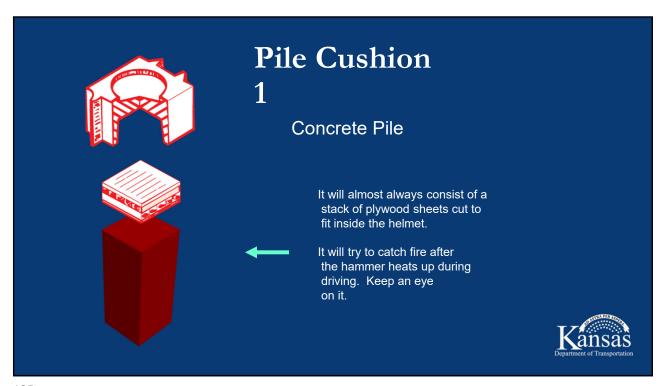
(Wood can be used on gravity hammers)

119

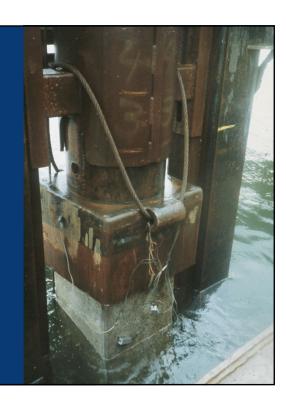
No matter what the material, KDOT requires the contractor to replace a hammer cushion when it looks like it's deteriorating, or when it's lost 25% of the original thickness.

Most hammers on KDOT projects need cushions that are 2" to 3" thick.


It is OK to use 2 thinner cushions to make up the needed thickness.

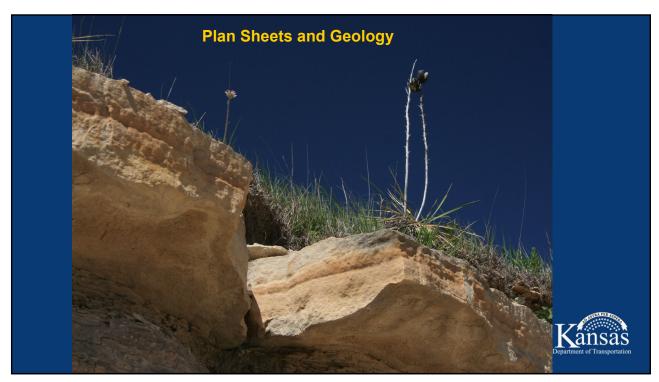

121

It's not uncommon to have 2 thinner cushions of different materials, such as nylon and Micarta or aluminum and Micarta.

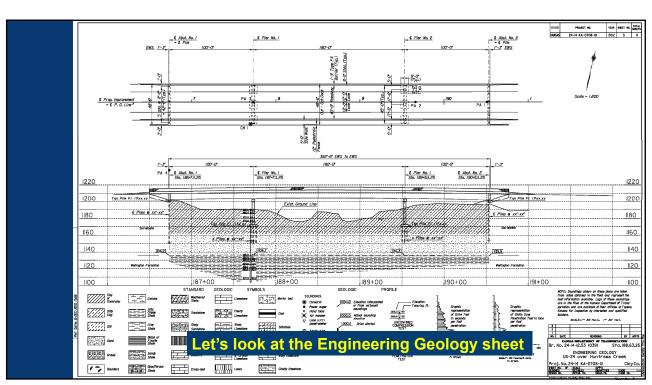


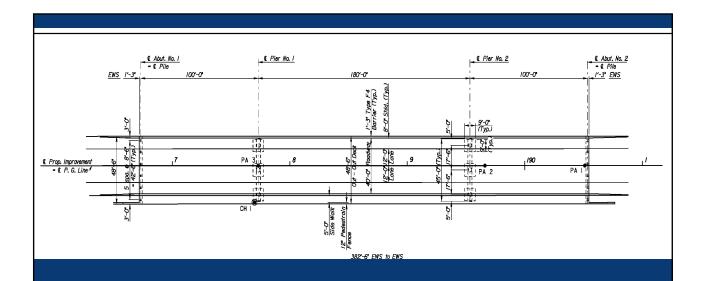
Problems with followers

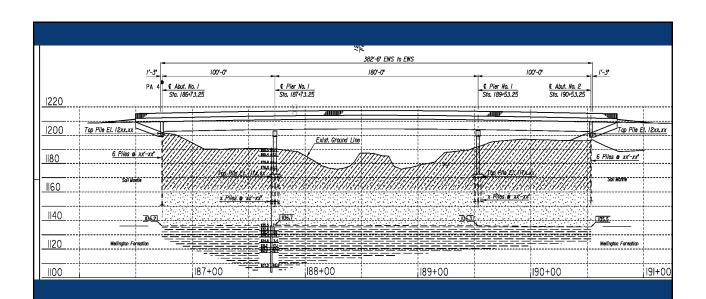
The follower will have a different weight per unit length from the pile


Hard to keep aligned

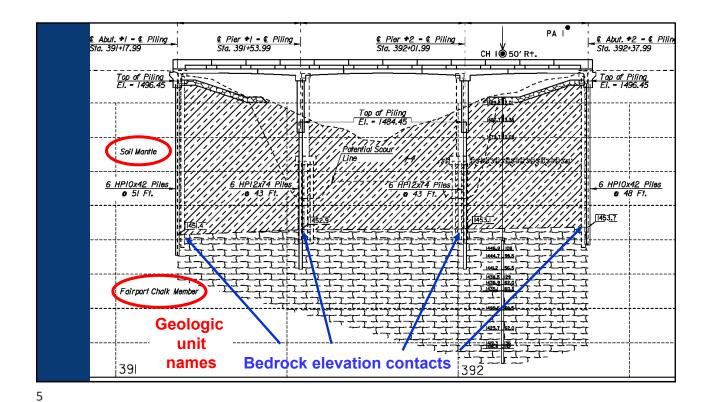
Allows for additional energy loss due to the compression of the follower and energy losses at the connections

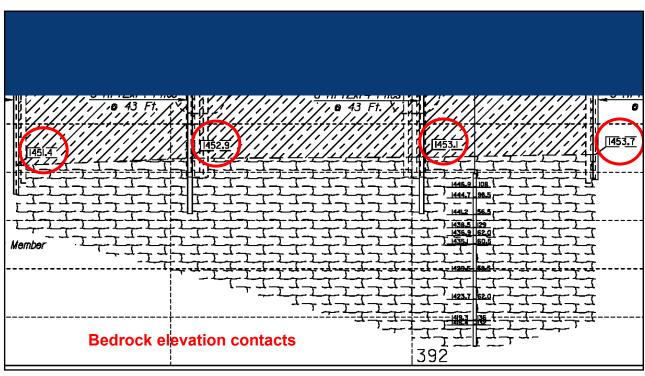

For these reasons, followers are not allowed on KDOT projects, except with the written permission of the Engineer

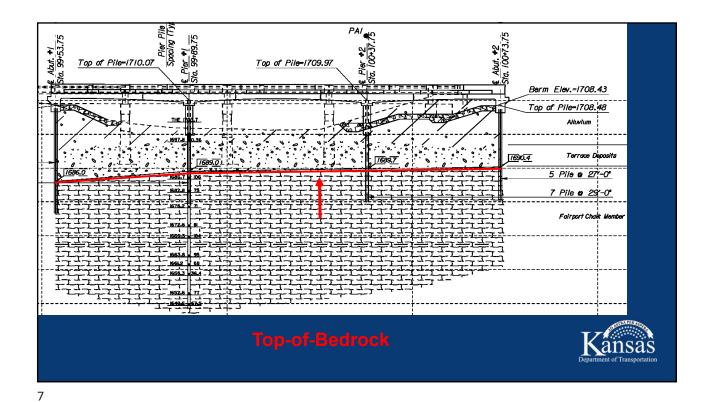


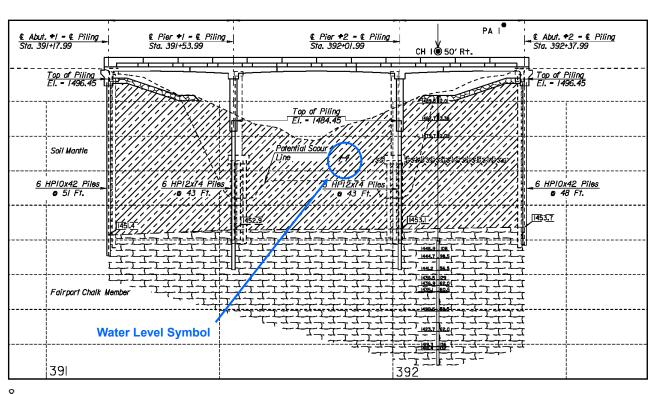


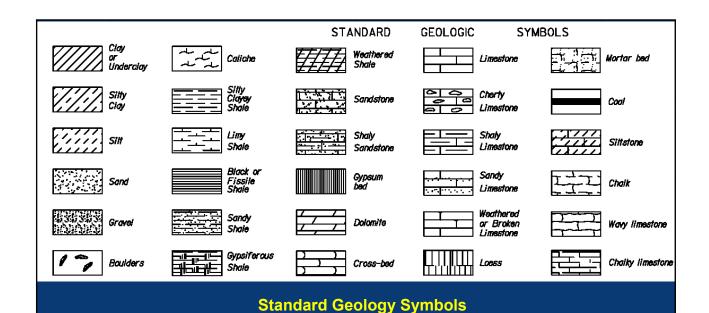
Top half of page shows plan view of bridge with our drill locations

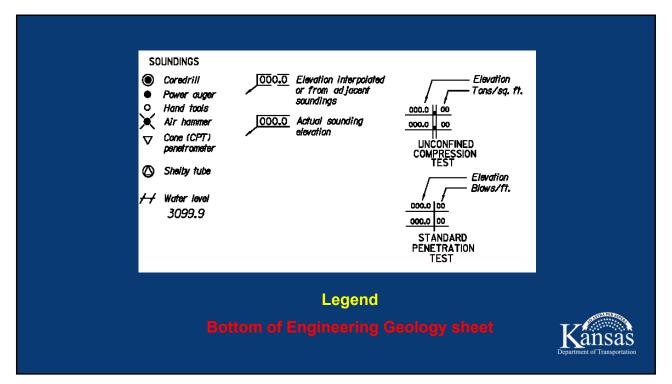


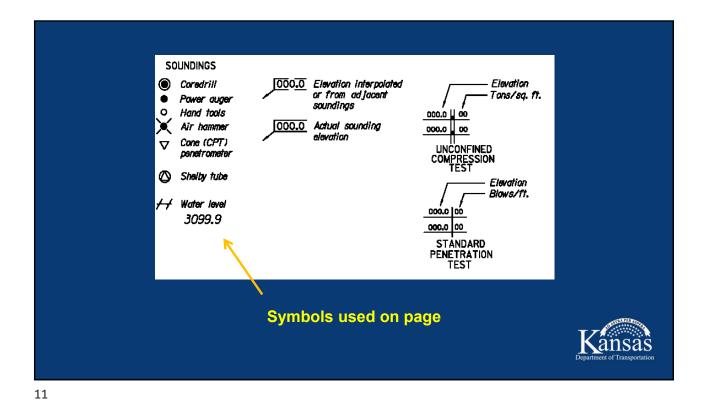

3

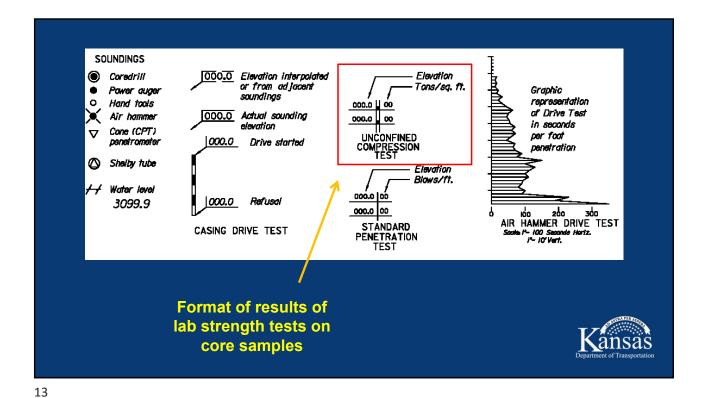


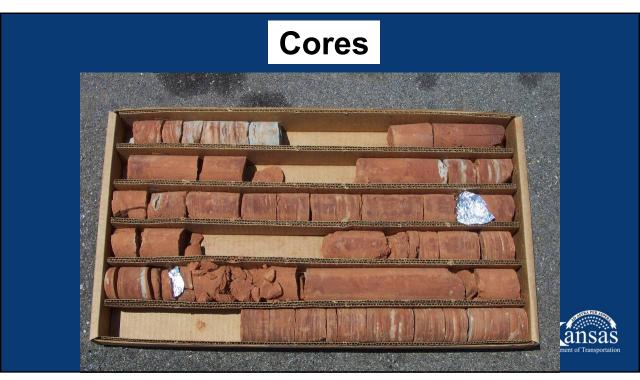

Bottom half of page shows a cross-section of the subsurface, with geology drawn in

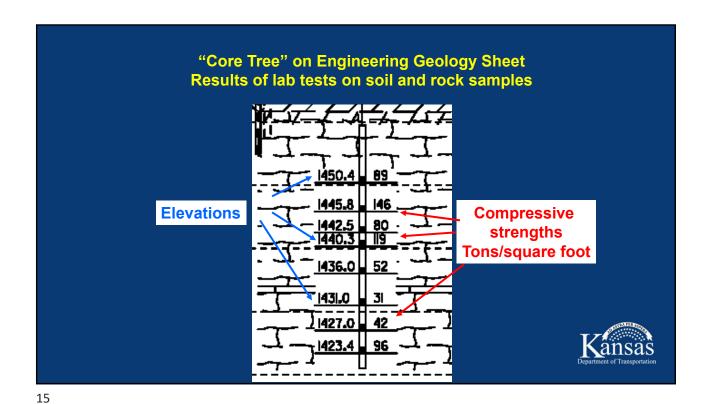


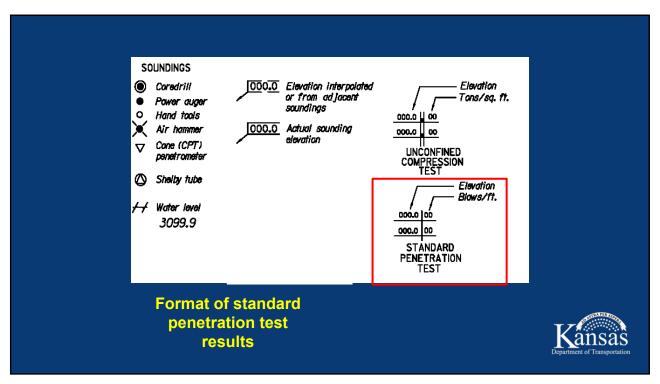




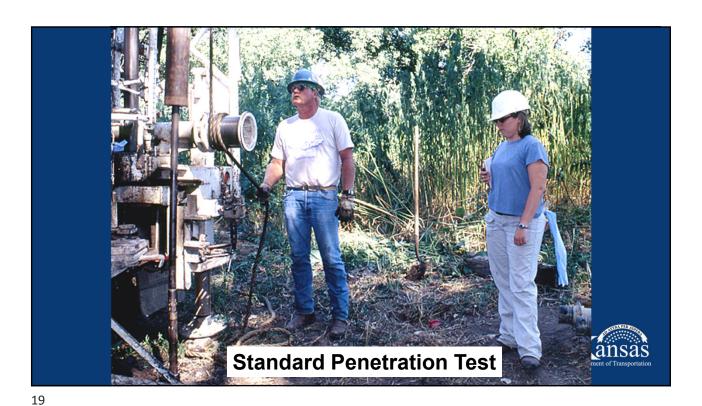




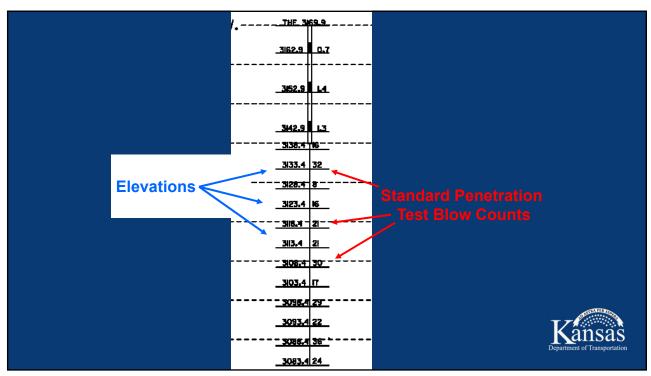




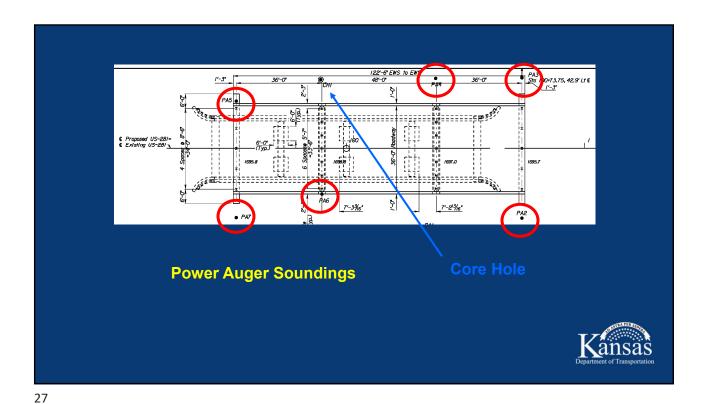
SOUNDINGS 000.0 Elevation interpolated or from adjacent ◉ Coredrill Elevation Tons/sq. ft. Power auger soundings Hand tools 000.0 📙 00 000.0 Actual sounding Air hammer 000.0 elevation Cone (CPT) ∇ UNCONFINED COMPRESSION TEST panetrometer Shelby tube Elevation Blows/ft. Water level 000.0 | 00 3099.9 000.0 STANDARD PENETRATION TEST **Examples of elevation** callouts on crosssection view

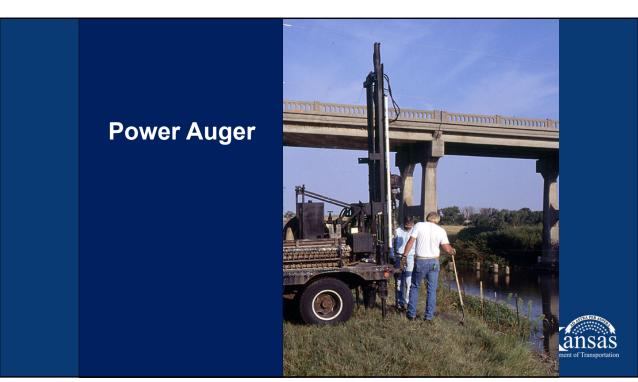

Standard Penetration Test

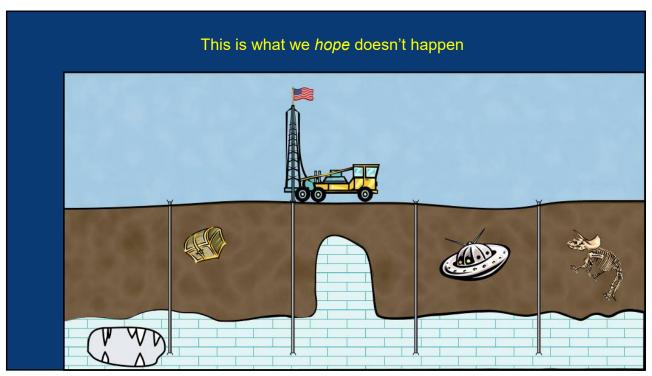
Gives both a relative resistance of the soil and a sample of it

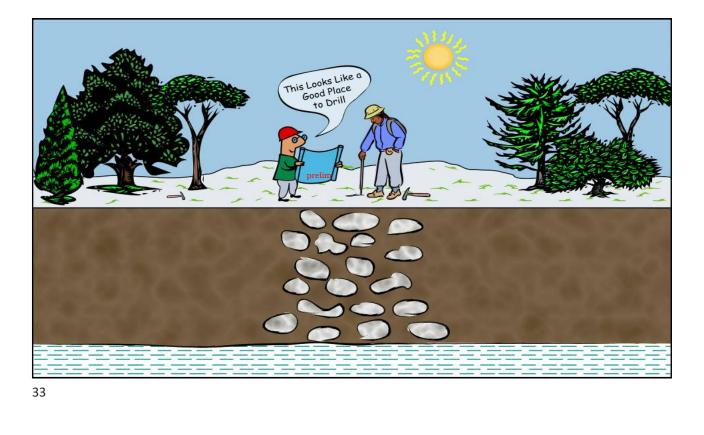

Been around since the 1920's

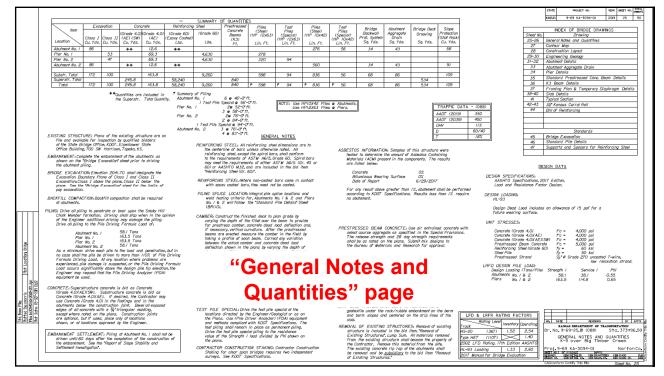
Used all over the world

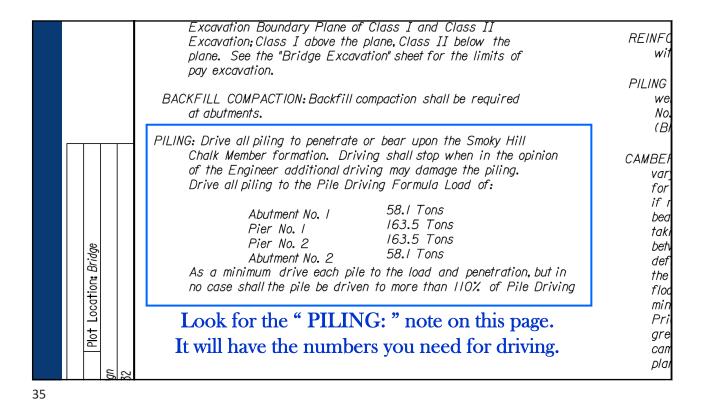


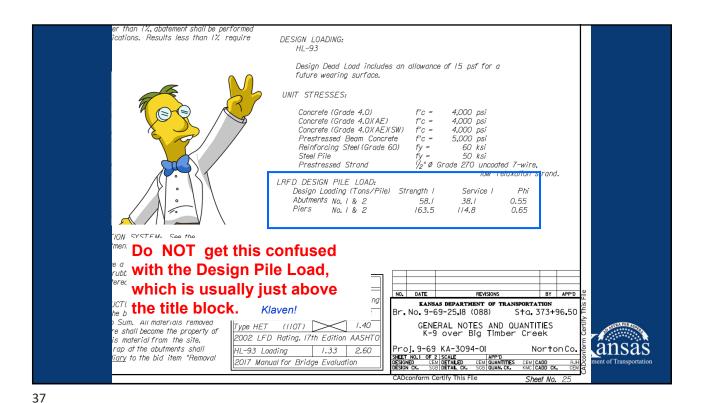


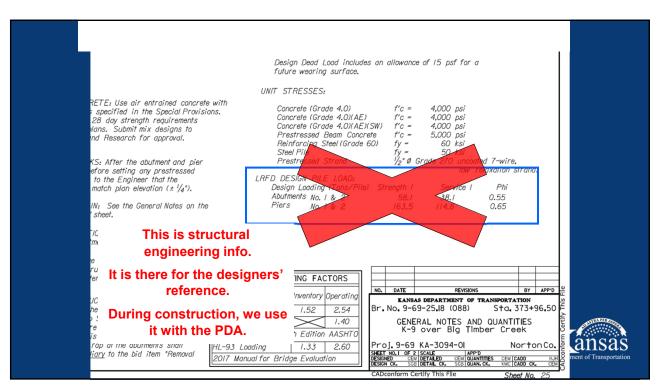


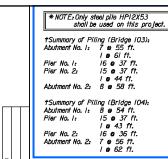







PILING: Drive all piling to penetrate or bear upon the Smoky Hill Chalk Member formation. Driving shall stop when in the opinion of the Engineer additional driving may damage the piling.


Drive all piling to the Pile Driving Formula Load of:


Abutment No. I 58.1 Tons
Pier No. I 163.5 Tons
Pier No. 2 163.5 Tons
Abutment No. 2 58.1 Tons

This is what you're interested in.

** Quantities are included in the Superstr. Total Quantity.

TRAFFIC DATA - (103&104)	
AADT (2012)	3,600
AADT (2032)	5,200
DHV	9%
D	<i>55/4</i> 5
Τ	18.4%

RATING FACTORS - Br. No. (103) EB Rating Level Inventory Operating Truck HS-20 (36T) 2.797 4.672
Type HET (110T) 1.639 2002 LFD Rating. 17th Edition AASHTO HL-93 Loading | 1.580 | 2.048 2008 Manual for Bridge Evaluation

GEN

Sometimes there is also a summary of piling type and length on this page.

As a minimum drive each pile to the load and penetration, but in no case shall the pile be driven to more than IIOX of Pile Driving Formula Driving Load. At any location where problems are experienced, pile damage is suspected, or the Pile Driving Formula Load occurs significantly above the design pile tip elevation, the Engineer may request that the Pile Driving Analyzer (PDA) equipment be used.

PILING SPLICE LOCATION: Integral pile splice locations and weld testing criteria for Abutments I and 2 will follow the "Standard Pile Details" Sheet (BRIIO).

\TION: All excavation shall be Class III. See Excavation sheet for the limits of pay

ECIAL: Drive the test pile special at the rected by the Engineer/Geologist or as on Ise (Pile Driver Analyzer) (PDA) equipment compliant with KDOT Specifications. The hold remain in place as permanent piling. Drive the test pile special piling to the resistance value of the Strength I load divided by Phi shown on the plans.

COLUMN CONSTRUCTION: Cure the column footing as required by the KDOT Specifications before beginning the column construction (placing resteel or formwork). Do not place ast in place shear bolts, coil inserts, or after devices used as falsework support in the columns without the approval of the Engineer. Do not remove column formwork without the approval of the Engineer. Curing shall continue after the formwork is removed as required by the KDOT Specifications. by the KDOT Specifications.

39

For years at KDOT, we drove piling to the Allowable Load.

Now it is called the **Pile Driving Formula Load**.

If necessary, we can drive to 110 % of the Pile Driving Formula Load.

That's usually **not** necessary.

Most of the time, you should drive to the pile driving formula load and then stop.

41

If you are driving to a certain depth, then the 110 % rule can be handy.

On most projects, going over the specified load is wasting money at best.

At worst, you could damage the pile.

Make sure you have a good reason for driving much past the specified load.

43

Let's take another example....

Plotted By: \$\$USERNAME\$\$ | Plot Location: \$USFINE: \$\text{Plot} \text{Sets \$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$

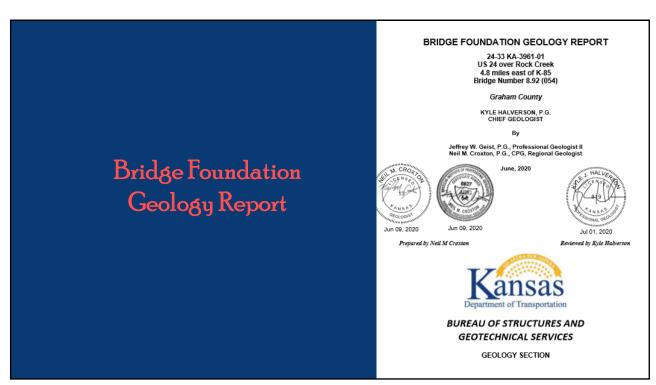
PILING: Drive all piling to penetrate or bear upon the Wellington Formation. Driving shall stop when in the opinion of the Engineer additional driving may damage the piling. Drive all piling to the Pile Driving Formula Load of:

Abutment No. 1: 86 Tons
Pier No. 1: 88 Tons
Pier No. 2: 88 Tons
Abutment No. 2: 86 Tons

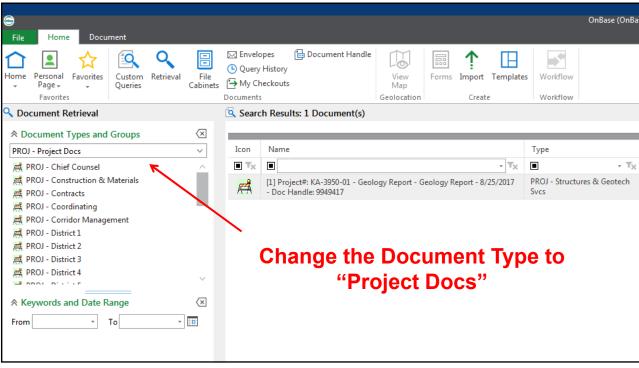
As a minimum drive each pile to the load and penetration, but in no case shall the pile be driven to more than IIO% of Pile Driving Formula Driving Load. At any location where problems are experienced, pile damage is suspected, or the Pile Driving Formula Load occurs significantly above the design pile tip elevation, the Engineer may request that the Pile Driving Analyzer (PDA) equipment be used.

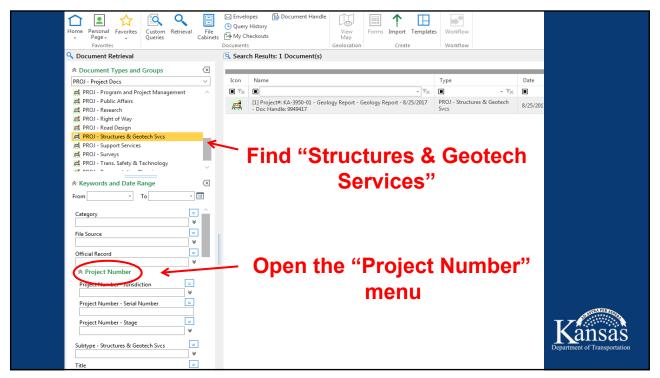
Abutment No. 1 86 Tons
Pier No. 1 88 Tons
Pier No. 2 88 Tens
Abutment No. 2 86 Tons

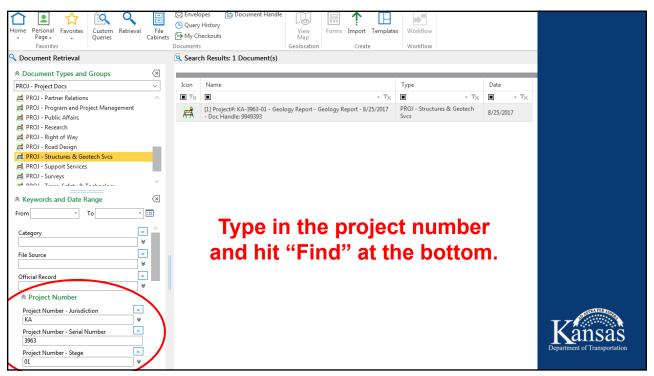

Let's do Abutment 2....

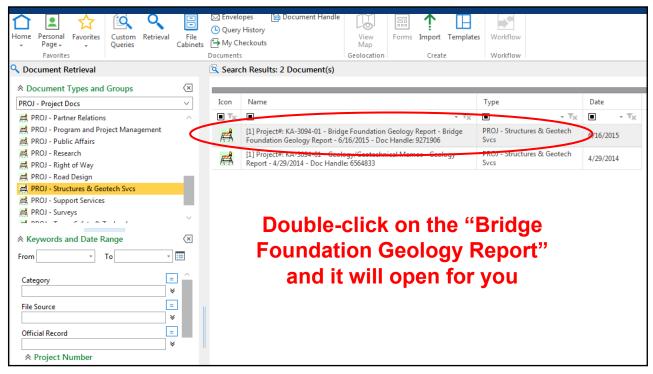

86 tons x 1.1 = 94.6 tons

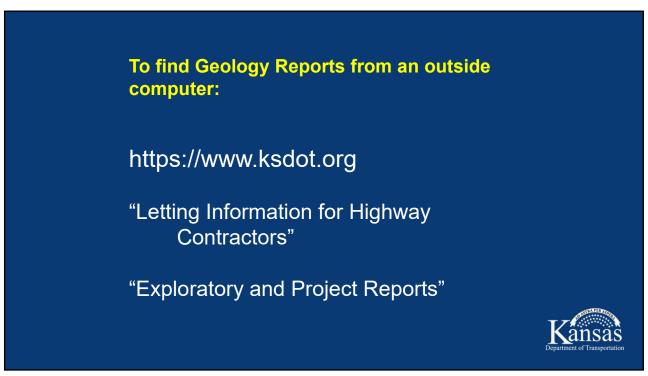
So we'd drive to 86 tons. If necessary, we could go to 95 tons.

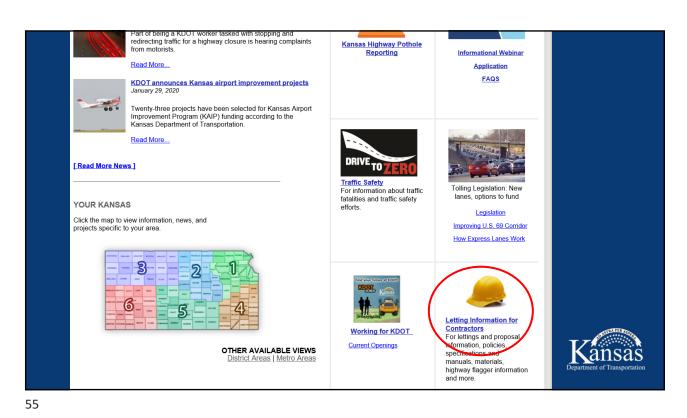


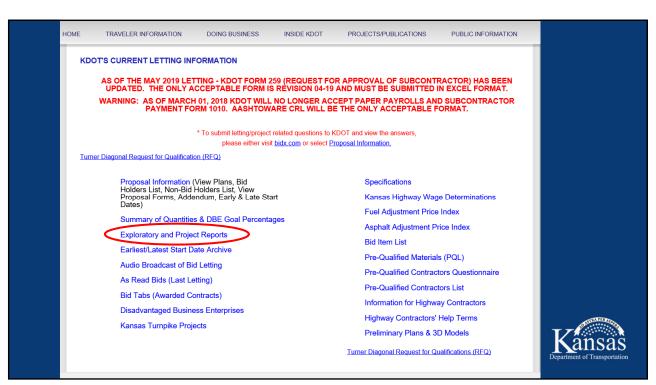

To find Geology Reports on Document Management from KDOT computer:

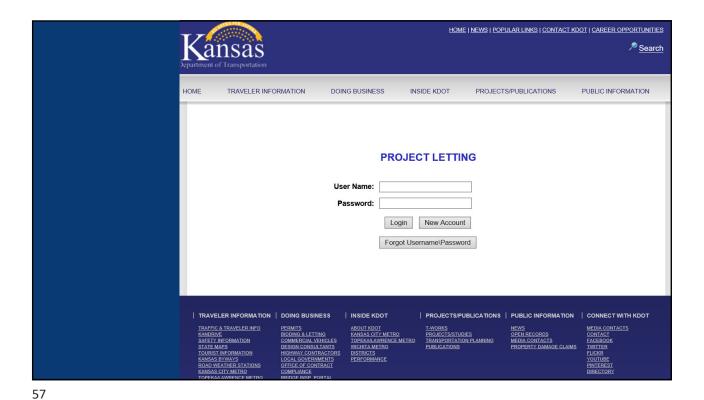

Open OnBase


Go to the Retrieval tab

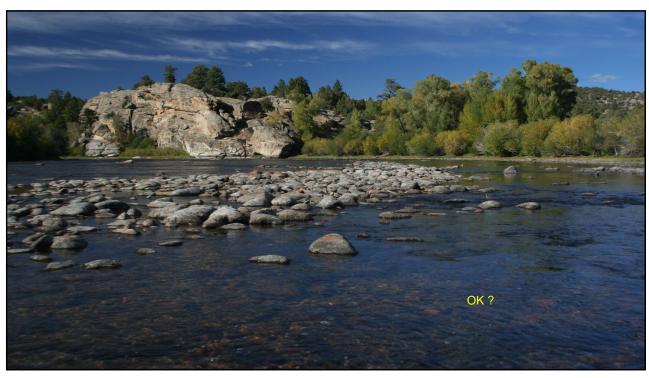








Reading the Geology Report is one of the first things you should do on a piling project.


It will describe the geology of the site in great detail. And it will warn you about any problems you might have with stray boulders, hard layers above our bearing material, strange pile lengths, etc.

The Pile Driving Formula & Problems with Dynamic Formulas

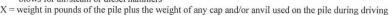
1

List of the Formulas

- Standard Specifications; version July 2015
 - Section 704
 - Subsection 704.4 Construction Requirements
 - Table 704-1 Pile Formulas

List of the Formulas

- Bridge Construction Manual
 - Version Oct 2009(updated 5-21-13)
 - Chapter 5.3 Driven Pile
 - Section 5.3.8.2 Pile Driving Formulas
 - Page 39


3

List of the Formulas

TABLE 704-1: PILE FORMULAS		
Hammer	Pile Type	Formula
Gravity	Steel Shell Steel Sheet	$P = \frac{3 \text{ W H}}{S + 0.35} \left(\frac{W}{(W + X)} \right)$
Air/Steam (Single Acting)	All Types	$P = \frac{2 W H}{S + 0.1}$
Air/Steam (Double Acting)	All Types	$P = \frac{2}{S + 0.1}$
Delmag and McKierman-Terry*	All Types	$P = \frac{1.6 W H}{S + 0.1 \left(\frac{X^{**}}{W}\right)}$
Link-Belt*	All Types	$P = \frac{1.6 \text{ E}}{S + 0.1 \begin{pmatrix} X^{**} \\ W \end{pmatrix}}$

^{*}diesel hammers

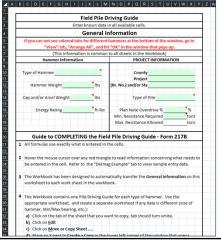
S = the average penetration in inches per blow for the last 5 blows for gravity hammers and the last 20 blows for air/steam or diesel hammers

^{**} For diesel hammers, the quantity X/W shall not be less than 1.

P = safe bearing power in pounds

W = weight in pounds, of striking part of hammer

H = height of fall in feet


E = energy of ram in foot-pounds per blow

Computer Version of the Pile Driving Formulas

• Field Pile Driving Guide

• Download from Forms Warehouse

Search Form 217b

5

Using the Pile Driving Formula

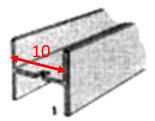
- Piles should be driven to a minimum load of the <u>Pile Driving Formula Load</u> listed in the plans
- For LRFD projects 110% of the Pile Driving Formula Load will be the maximum allowed

Determining Max. Capacity

- Pile Driving Formula Load listed is 55 tons
 - Using the Pile Driving Formula, the minimum bearing capacity needed is tons
 - The maximum capacity the pile can be driven to is
 55 tons x 110% = tons

7

Determining Max. Capacity


- Pile driving formula load listed is 55 tons
 - Using the pile driving formula, the minimum bearing capacity needed is <u>55 tons</u>
 - The maximum capacity the pile can be driven to is 55 tons x 110% = 60.5 tons

Pile Call Out

What do the numbers on H-pile represent?

- Size and Weight
 - For H-pile HP10x42
 - The 10 represents the width of the web in inches
 - 42 represents the weight of the pile per linear foot (pounds/ft)
 - Calculate the weight of 35 ft. long pile

9

Class Problem using the Pile Driving Formula For A Diesel Hammer

$$P = \frac{1.6 \text{ W H}}{\text{S} + [0.1(\text{X} / \text{W})]}$$

Determining Pile Bearing

- You are driving HP 10 x 42 using a Delmag D12 hammer.
- Hammer ram weight is 2820 pounds (from contractor)
- Cap + Anvil weight is 2710 pounds (from contractor)
- 24 feet of pile placed in the leads
- Pile Driving Formula Load is 55 tons (max is 55 x 110% = 60.5 tons)
- You have a stroke of 7.5 feet
- You record 3 inches of movement in 20 blows

$$P = \frac{1.6 \text{ W H}}{\text{S} + [0.1(\text{X} / \text{W})]}$$

11

Determining Pile Bearing

- You are driving HP 10 x 42 using a Delmag D12 hammer.
- Hammer ram weight is 2820 pounds (from contractor)
- Cap + Anvil weight is 2710 pounds (from contractor)
- 24 feet of pile placed in the leads
- PDF load is 55 tons (max. is 55 x 110% = 60.5 tons)
- You have a stroke of 7.5 feet

16WH

You record 3 inches of movement in 20 blows

r- <u> </u>	1.0 W H	
S.	+ [0.1(X / W)]	
W =	Weight of Hammer Ram =	2820 pounds
H =	Stroke of Hammer =	7.5 feet
S =	Set per blow (3 inches/20 blows) =	.15 inch
Cap +	Anvil weight =	2710 pounds
Pile w	reight (24 feet x 42 pounds) =	1008 pounds
X = Ca	p + Anvil + Pile weight = 2710 + 1008 =	3718 pounds
X/W=	3718/2820 =	1.32

Determining Pile Bearing

• W= ram weight = 2820 lbs

• H= stroke height = 7.5 feet

• S= average set per blow = .15 inch $P = \frac{1.6 \text{ W H}}{\text{S} + [0.1(\text{X}/\text{W})]}$

X= Cap + Anvil + Pile weight = 3718 pounds
 X/W = 3718/2820 = 1.32>1.0

• Pile Driving Formula load = 55 tons

• P= <u>1.6 (2820 lbs)(7.5 ft.)</u> 0.15 +[0.1 (3718 lbs/2820 lbs)]

• P= <u>1.6 (2820 lbs)(7.5 ft.)</u> = <u>33840</u> 0.15 + [0.1 X 1.32] 0.15 + .132

• P= <u>33,840 lbs</u> = 120,857 Pounds 0.28

• P= <u>120,857 lbs</u> (Convert to tons) 2000 lbs

P= 60 tons (Minimum Bearing Needed is 55 tons)

Class Problem

 You are inspecting a pile driving operation in which the contractor is using a Delmag D15 open end diesel hammer to drive 12 X 53 H-pile that is 50 feet long. The contractor has supplied you with the following hammer specification information:

Ram (piston) weight 3300 pounds
 Cap weight 1323 pounds
 Anvil weight 311 pounds
 Total hammer weight 6603 pounds

- With a pile penetration depth of 42.5 feet you record a pile movement of 3.5 inches in 20 blows and observe a hammer stroke of 6.5 feet. Using the KDOT bearing formula for a Delmag hammer what is the bearing capacity of the pile at that time?
- P= <u>1.6 W H</u> S + [0.1(X / W)]

P = bearing capacity in pounds
 H = height of stroke in feet,
 W = weight of ram in pounds
 S = set per blow in inches

• X = weight of pile, anvil, and cap in pounds

13

Determining Pile Bearing

- W= Mass of ram = 3300 pounds
- H= Stroke or fall height = 6.5 feet
- S= set per blow = 3.5 inches/20 blows = .175 inch
- X= weight of anvil + cap + pile = 311+1323+(50 X 53)

```
X = 311+1323+2650 = 4284 pounds
```

• X/W = 4284/3300 = 1.298>1.0

- P= <u>34,320 lbs</u> = 112,598.4252 pounds 0.3048
- P= <u>112,598.4252 lbs</u> = 56 tons 2,000 lbs

15

Other uses of the Pile Driving Formula

- Checking the size of the hammer
- Calculating the required set in 20 blows

Checking the size of the Hammer

- The inspector should check to see if the contractors hammer is big enough to drive the pile
- To do this you will need the hammer specifications (these are provided by the contractor)
- Assume a practical refusal of <u>10</u> blows/inch
- Use the maximum stroke the hammer can achieve
- Plug the number into the pile driving formula
- Your answer should be
 - Pile Driving Formula Load < P < 110% of PDFL

17

Where to find an example

- Bridge Construction Manual
- Version Oct 2009(updated 5-21-13)
- Chapter 5.3 Driven Pile
- Section 5.3.6.2 Preparing to Drive Pile
- Pages 19-20

Checking the size of the hammer

- Driving 40 feet of 10x42 H-pile using a Delmag D12
- Piston weight = 2750 pounds (W)
- Cap and anvil weight = 2690 pounds
- Pile weight = 40 feet x 42 lbs./ft = 1680 lbs.
- Weight of pile + weight of cap and anvil= 2690 + 1680 = 4370 pounds (X) $P = \underbrace{1.6 \text{ W H}}_{S + 0.1(\text{X / W})}$
- Maximum stroke = 8.17 feet (H)
- 1inch/10blows = **0.1** inch/blow (**S**)
- P= Pile Driving Formula Load = 112,000 pounds or 56 tons.
- 110% of design load is 123,200 pounds or 62 ton

19

Determining Pile Bearing

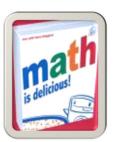
- W= 2750 pounds X= 4370 pounds
- H= 8.17 feet S= 0.1 inch
- X/W= 1.6
- Pile Driving Formula Load=112,000 pounds or 56 tons 110% = 123,200 pounds or 62 tons
- P= 1.6 W H = (1.6)(2750)(8.17)S + 0.1(X / W) 0.1 + [(0.1)(1.6)]

- P=138,261 pounds = 69 tons
- 112,000 pounds<138,261123,200 pounds>1123,200 pounds
- 56 tons < 69 tons > 62 tons

However use caution as the Hammer is Capable of overdriving the pile

Calculating the required set in 20 blows

 Now that the hammer has been found to be okay you can calculate the actual average penetration required for the last 20 blows needed to achieve bearing



21

- $P = \frac{1.6 \text{ W H}}{\text{S} + 0.1(\text{X}/\text{W})}$ Calculating the required set in 20 blows
- $S = \frac{1.6 \text{ W H}}{P} 0.1(X/W)$
- S = (1.6)(2750)(8.17) 0.1(1.589)112,000
- S = 0.321 0.159 = 0.16 inch/blow

- This means that for the last 20 blows the pile should be driven down 3.2 inches (0.16 inch/blow x 20 blows) or less.
- If the pile is driven further than 3.2 inches for 20 blows, then the pile does **NOT** have the required bearing yet.

Problems with Dynamic Formulas

23

Problems with Dynamic Formula

- Dynamic formulas are based on physics and transfer of energy with built in assumptions about the
 - Driving System
 - Soil Resistance
 - Pile

The Driving System

- Dynamic formulas offer a poor representation of the driving system and the energy losses of the drive system components
 - Driving systems include many elements in addition to the ram such as the anvil, helmet, hammer cushion, and pile cushion
- These components affect the hammer energy at and after impact which influences the magnitude and duration of peak force
- Peak force and duration determines the ability of the driving system to advance the pile into the soil.

25

The Soil Resistance

- Assumes soil resistance is a constant force
 - This assumption neglects obvious characteristics of real soil behavior
- Dynamic soil resistance is the resistance of the soil to rapid penetration produced by a hammer blow
 - This resistance is not equal to static soil resistance
 - Most dynamic formulas consider the resistance during driving to be equal to static resistance or pile capacity
 - In most cases capacity will increase or decrease with time due to soil set up or relaxation

The Pile

- The dynamic formulas assume a rigid pile
 - Piles have flexure allowing them to penetrate the soil
 - Pile also have elastic properties
 - These compressive waves are responsible for advancing the pile into the ground
- · Some formulas do not take the weight of the pile into account
 - KDOT's formula does

27

Case Histories

- Let's take a look at a few cases where dynamic formulas gave false pile capacity results
 - 2 outside of KDOT
 - Various pile types
 - Delmag and McKierman-Terry Formula (aka the Engineering News Record Formula (ENR)
 - PDA and static load test
 - 2 KDOT projects
 - · Engineering News Record Formula
 - PDA

Case 1

- 24-inch square pre-stressed concrete pile
- · 12-inch diameter void in center of pile
- Pile was driven to a final penetration of 34 blows per foot (end of drive)
- Re-strike test 13 days later penetration was 118 blows per foot
- Pile was then static load tested

29

Case 1 Results

- Using end of drive data (stroke and set)
 - The ENR formula predicted a pile driving formula load of 153 tons
- Dynamic testing with PDA on re-strike gave an ultimate pile capacity of 462 tons
- Static test had a failure load of 475 tons
- Hence:
 - The formulas significantly under predicted the pile driving formula load and ultimate pile capacity

Case 2

- 14 inch closed end pipe pile
- Pile Driving formula load 110 tons
- Pile was driven to a final penetration of 148 blows per foot (end of drive)
- Restrike was preformed
- Pile was static load tested

31

Case 2

- End of drive data
 - ENR formula predicted a design load of 245 tons
 - PDA at end of drive ultimate capacity 229 tons
- PDA on re-strike showed decrease of ultimate capacity to 205 tons
- Static test had a failure load of 210 tons
 - · PDA re-strike testing nearly matches static load testing
- Assuming a safety factor of 2, capacity would be 105 tons (210 tons/2)

Case 2

- In this case:
 - ENR formula over predicted the design load by more than 230%
 - Over prediction partially due to soil relaxation

33

Case 3 KDOT

- H-pile 14x73
- Pile pre-drilled to scour line
- Driven through silty sand and gravel into the Ogallala Formation
- Pile Driving formula load 91 tons; 100 tons (max)
- Re-strike test 24 hours later

Case 3 Results

End of Drive

ENR Formula
 PDA
 73 tons (need 91 tons)
 185 tons (need 140 tons)

24 hour re-strike

ENR Formula
 PDA
 93 tons
 207 tons

In this case:

• Pile Driving formula under predicted capacity by about 2.5 times

Again, the ENR formula underpredicted the pile capacity

35

Case 4 KDOT

- H-pile 10x42
- Driven through silty sand at south abutment of highway 400 over Arkansas River
- Pile driving formula load 70 tons; 77 tons (max)
- Re-strike test 24 hours later

Case 4 Results

• End of Drive

Bearing FormulaPDA51.6 tons (need 70 tons)102 tons (need 107 tons)

24 hour re-strike

Bearing FormulaPDA69 tons170 tons

Another case of pile driving formula underpredicting pile capacity

37

LRFD

- Load and Resistance Factor Design (LRFD) does require more test pile and the use of the PDA:
 - 26 to 50 piles in the bridge structure
 - 1 to 3 piles (2-5% of total piles)
 - 51 to 100 piles in the bridge structure
 - 1 to 5 piles (2-5% of total piles)

Pile Driving Formula

- The pile driving formula is still a good tool for KDOT inspectors to use to calculate bearing
- Will be conservative in most cases for Kansas Native Soil types
- · Could over predict if relaxation occurs
- Should always consider options before splicing on more pile to drive deeper
 - Can the pile set for a period of time and see what the bearing is after a restrike
 - Are there other pile drive records in the area for review
 - Consult the Engineer in charge

39

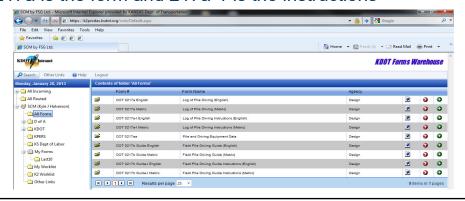
Questions?

Railroad Steam Pile Driver 1912

Kansas

The Form 217

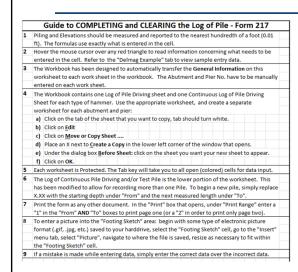
1


Explanation of Forms

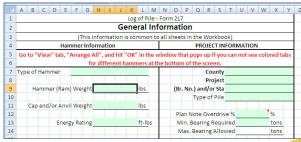
- Bridge Construction Manual
 - Chapter 5.3 Driven Pile* Updated 5-21-13
 - Section 5.3.8 Log of Pile Driving
 - Page 26 through 36
- Forms Warehouse
 - Form 217a & 271b (English and Metric both available)

Where To Find Form 217

- KDOTweb-forms warehouse
 - Search for Form 217
- 217a is the form and 217a-1 is the instructions



3


Form 217

- Consists of 4 Sections;
 - General Information
 - Record Keeping
 - Continuous Log
 - Summary

- Fill out the green boxes
- This information carries forward to all forms

5

- Type of hammer
 - Type, brand, model & size
 - Example: Diesel-Delmag D15
- Weight of the hammer (piston/ram)
 - Denoted on the hammer specification plate furnished by the contractor
 - Or look up in the reference chart in the Bridge Construction Manual
 - Online at: http://www.ksdot.org/Assets/wwwksdotorg/bureaus/burStructGeotech/ConstructionManual/pile.pdf

Hammer Info.

- Information from contractor
- Input this info. into form 217-aa
 - Form 217-aa can be found in the Forms Warehouse

e: ×	Contract No.: 516022585 Project: J235-087 KA 3109-01	Structure Name and/or No.: 235-87-21.62 235-87-21.64 (839)	(838)	
	County: Sedgwick	Pile Driving Contractor : Dondlinger & Son	ns Const.	
		HAMMER.		
	Manufacturer : Pileco	Model: <u>D19-42</u> Serial No. 3196		
	Type: Single Action Diesel Hammer Rated Energy: 42,480 @ 1	Et. Length of Stroke		
	Ram Weight : .4.015 Anvil Weight : _779			
		CAP BLOCK.		
	Material :Steel Plate	Weight: In Pile Cap		
	Thickness:	Area: 289 Sq. In.		
		CUSHION		
	Cushion Material: MC904P Plasticized	Blue Nylon		
		PILE CAP		
	Primary Helmet Weight: 1151 Drive-Head Weight: 890			
		PILE		
	Pile Type: Steel HP 12x53 Weight per Lineal Foot: 53 Design Pile Capacity: Varies 69 to 80	Length in Leads : <u>Varies</u>		
				AD A

-

Form 217-aa Pile driving and Equipment data

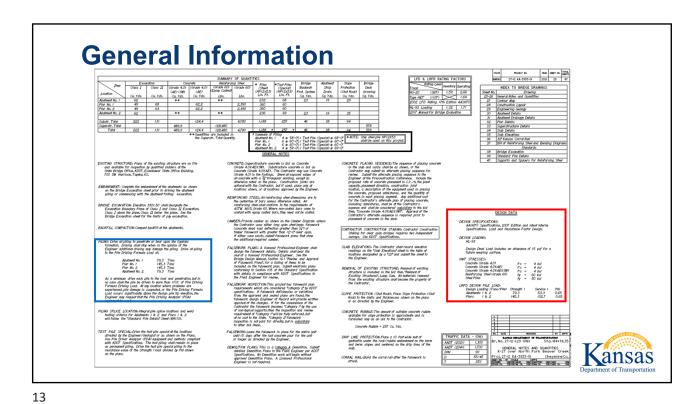
	Notice to Contractors			Material	Area	(ii	
P	ile and Driving Equipment D	ata	CUSHION	Modulus of Elasticity (E)		(1	
Test Pile/Test Pile (Spe	ecial), Section 704, Division 700, 200	7 Standard Specifica	ations		Coefficient of Restitution (e)		
et No.	County						\blacksquare
ract No.	Structure Na	me/Nc		Р	ile and Driving Equipment (ata	
		ille/NC			ecial), Section 704, Division 700, 200		tions
Contractor or Subcontrac	tor						+
	Manufacturer	Model			Pile Type		
	Type	Serial No		PILE	Length (in leads)		(1
HAMMER					Weight (per foot)		(1
	Rated Energy (ft-lb)	(ft) Length	of Stroke		Wall Thicknes	(in) Taper	
1 N N	Fuel Setting						П
ANVIL	Modifications				Cross Sectional Are	(in²)	
	_				Design Pile Capaci	(ton)	
					Description of Spli		
	Material						
CAPBLOCK	Thicknes (inches) Area	(in²)				
	Modulus of Elasticity (E)		(psi)		Tip Treatment Descripti		
	Coefficient of Restitution (e)						
	coefficient of Restitution (e,						+
					or follower, is used to drive the pile		turer's
PILECAP	Helmet			detail sheets	including the weight and dimensio	ns.	
	Bonnet Anvil Block Weight		(lb)	Submitted by		Date	
	Drivehead		111				
				One Copy Each Sent To:			
					ction and Maintenance		
	Material	Area	(in²)	Bureau of Design,	State Bridge Office Is and Research, Geology Section		
CUSHION	Modulus of Elasticity (E)		(psi)	Project Engineer	a una nesearch, deology section		

Now Back to Form 217!

9

- Weight of the Cap and/or Anvil
 - Supplied by the contractor
 - May be welded on, or listed on a plate on the hammer
- Energy rating of the hammer
 - Denoted on the hammer specification plate
 - · Can look it up in the Bridge Construction Manual
 - Online at: http://www.ksdot.org/Assets/wwwksdotorg/bureaus/burStructGeotech/ConstructionManual/pile.pdf

- County, Project Number, Bridge No. and Station for the structure
- Enter number the of the Abutment or Pier where the pile was driven
- Type and size of pile enter entire description
 - Some Examples:
 - Pile (steel) HP10 x 42
 - Test Pile Special (steel) HP12 x 53
 - Pile (prestressed concrete) 12 inch



11

- · Minimum bearing required
 - This is the Pile Driving Formula load
 - Found on the Summary of Quantities and General Notes Page
 - Do not confuse this with the design load
- Maximum bearing allowed
 - 110% of pile driving formula load

PILING: Drive all piling to penetrate or bear upon the Ogallala formation. Driving shall stop when in the opinion of the Engineer additional driving may damage the piling. Drive all piling to the Pile Driving Formula Load of:

> Abutment No. 1 Pier No. I 145.3 Tons Pier No. 2 145.3 Tons 79.3 Tons Abutment No. 2

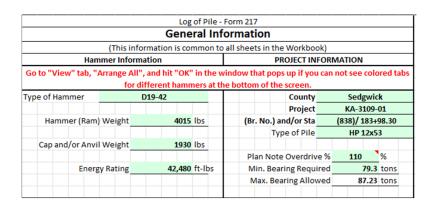
As a minimum drive each pile to the load and penetration, but in no case shall the pile be driven to more than 110% of Pile Driving Formula Driving Load. At any location where problems are experienced, pile damage is suspected, or the Pile Driving Formula Load occurs significantly above the design pile tip elevation, the Engineer may request that the Pile Driving Analyzer (PDA) equipment be used.

DESIGN DATA

DESIGN SPECIFICATIONS:

AASHTO Specifications, 2007 Edition and latest Interim Specifications. Load and Resistance Factor Design.

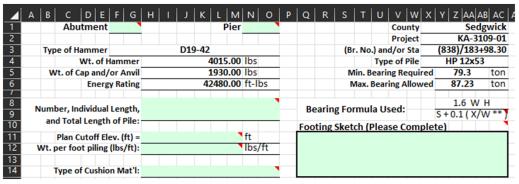
DESIGN LOADING:


Design Dead Load includes an allowance of 15 psf for a future wearing surface.

UNIT STRESSES:

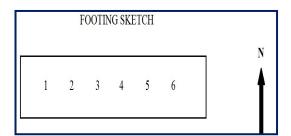
Concrete (Grade 4.0) 4 ksi Concrete (Grade 4.0)(AE) Concrete (Grade 4.0)(AE)(SW) f'c = f'c = fy = fy = 4 ksi 4 ksi Reinforcing Steel (Grade 60)

LRFD DESIGN PILE LOAD:
Design Loading (Tons/Pile) Strength I
Abutments I & 2 79.3
Piers I & 2 145.3 Service I 0.65 0.65



15

- After you fill out the "General Info" section you must determine the type of hammer you will be using to calculate pile bearing
 - · Hammer type was provided from contractor
- This is important! There are specific bearing formulas for each hammer type.
 - Bearing formula is automatically entered based on type of hammer used.
 - This example is using a diesel hammer.
 - You should choose the "Delmag & McKier-Terry" option, for diesel hammers



17

- Footing sketch
 - Draw a sketch of the footing with piles numbered to represent the numbers listed in the "Pile No." column on the form
 - A north arrow must be shown
- Represents the location of the pile no. listed in the data section.

- Number, Individual Length and Total Length of Pile
 - Enter the total length for the abutment or pier represented

- Also give a breakdown of the number and the length of piles used
 - Example: 4 @ 58 ft. and 1 test pile @ 68 ft.
 - This will not change if driven length is different. Enter information from plans (example below)

```
# Summary of Piling

Abutment No. | 4 @ 58'-0"; | Test Pile (Special) @ 68'-0"

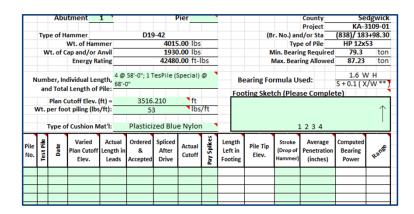
Pier No. | 6 @ 60'-0"; | Test Pile (Special) @ 60'-0"

Pier No. 2 6 @ 60'-0"; | Test Pile (Special) @ 60'-0"

Abutment No. 2 4 @ 59'-0"; | Test Pile (Special) @ 69'-0"
```


19

- Plan cutoff elevation as shown on plans
 - Enter top of pile elevation as shown on plans
- Type of cushioning material used for the hammer or pile
 - Example: Conbest, micarta
 - Maybe plywood for a pile cushion on concrete pile
 - Provided by contractor


- Weight per unit length of pile
 - For H-pile HP10x42
 - The 10 represents the width of the web in inches
 - 42 represents the weight of the pile per foot (pounds/ft)
 - For steel pipe pile
 - weight per length can be found on the mill test/lading ticket from the supplier

21

- Weight per unit length of pile
 - For pre-stressed concrete
 - · Weight per length should be given in test report
 - Or one can use a density of 150 lbs/ft³ to calculate a theoretical weight per unit length
 - 12" square = 150 lbs/ft.
 - 14" square = 204.22 lbs/ft.
 - 16" octagonal = 219.6 lbs/ft.

23

Record Keeping

Pile No.	Test Pile	Date	Varied Plan Cutoff Elev.	Actual Length in Leads	Ordered & Accepted	Spliced After Drive	Actual Cutoff	Pay Splices	Length Left in Footing	Pile Tip Elev.	Stroke (Drop of Hammer)	Average Penetration (inches)	Computed Bearing Power	Range
A!		3/20	1000.000	30.00	25.00		5.25		24.75	975.25	9.00	0.2500	77.1	High
A2		3/20		28.00	26.75		1.25	1	26.75	959.40	9.50	0.3000	71.3	OK
A3	У	3/20		29.00	28.00		3.25		25.75	960.40	10.00	0.2000	100.0	High
A4		3/20		25.30	25.30		0.00		25.30	960.85	10.00	0.3500	66.7	OK
A5		3/20		25.00	25.00		1.50		23.50	962.65	10.00	0.2500	85.7	High
A6		3/20		25.00	25.00		3.00		22.00	964.15	11.00	0.3000	82.5	High
A7		3/20		25.00	25.00		1.70		23.30	962.85	9.50	0.3000	71.3	OK
A8		3/20		25.00	25.00		1.70		23.30	962.85	10.00	0.3500	66.7	OK
A9		3/20		25.00	27.00	2.00	0.00	1	27.00	959.15	10.00	0.2500	85.7	High
A10		3/20		25.50	25.00		1.40		24.10	962.05	10.00	0.2500	85.7	High
B1		3/20		52.00	52.00		1.90		50.10	936.05	10.00	0.2500	85.7	High
B2		3/20		52.00	52.00		3.50		48.50	937.65	11.00	0.2500	94.3	High
В3		3/24		52.00	52.00		4.00		48.00	938.15	9.00	0.3000	67.5	OK
B4		3/24		52.00	52.00		5.00		47.00	939.15	10.00	0.3000	75.0	High
B5		3/24		52.00	54.00	2.00	0.00	1	54.00	932.15	10.00	0.3500	66.7	OK
B6		3/24		52.00	52.00		1.55		50.45	935.70	10.00	0.2500	85.7	High
B7		3/24		52.00	52.00		1.70		50.30	935.85	10.00	0.2500	85.7	High
B8	У	3/25		75.00	55.00		23.80		51.20	934.95	11.00	0.1500	132.0	High
В9		3/25		52.30	52.00		1.90		50.40	935.75	11.00	0.2500	94.3	High
\sim	\bowtie	> <	> <	754.10	730.05	4.00	62.40		695.70	> <	> <	> <	$\supset <$	> <

- Elevations are calculated to the nearest one hundredth of a foot (0.01 ft)
 - Computer generated.
- Record pile length to the nearest one hundredth of a foot (0.01 ft)

Pile No.	Test Pile	Date	Varied Plan Cutoff Elev.	Actual Length in Leads	Ordered & ccepted	Spliced After Drive	Actual Cutoff	Pay Splices	Length Left in Footing	Pile Tip Elev.	Stroke (Drop of Hammer)	Average Penetration (inches)	Computed Bearing Power	Range
A!		3/20	1000.000	30.00	25.00		5.25		24.75	975.25	9.00	0.2500	77.1	High
A2		3/20		28.00	26.75		1.25	1	26.75	959.40	9.50	0.3000	71.3	OK
A3	У	3/20		29.00	28.00		3.25		25.75	960.40	10.00	0.2000	100.0	High
A4		3/20		25.30	25.30		0.00		25.30	960.85	10.00	0.3500	66.7	OK
A5		3/20		25.00	25.00		1.50		23.50	962.65	10.00	0.2500	85.7	High
A6		3/20		25.00	25.00		3.00		22.00	964.15	11.00	0.3000	82.5	High
A7		3/20		25.00	25.00		1.70		23.30	962.85	9.50	0.3000	71.3	OK
A8		3/20		25.00	25.00		1.70		23.30	962.85	10.00	0.3500	66.7	OK
A9		3/20		25.00	27.00	2.00	0.00	1	27.00	959.15	10.00	0.2500	85.7	High
A10		3/20		25.50	25.00		1.40		24.10	962.05	10.00	0.2500	85.7	High
B1		3/20		52.00	52.00		1.90		50.10	936.05	10.00	0.2500	85.7	High
B2		3/20		52.00	52.00		3.50		48.50	937.65	11.00	0.2500	94.3	High
В3		3/24		52.00	52.00		4.00		48.00	938.15	9.00	0.3000	67.5	OK
B4		3/24		52.00	52.00		5.00		47.00	939.15	10.00	0.3000	75.0	High
B5		3/24		52.00	54.00	2.00	0.00	1	54.00	932.15	10.00	0.3500	66.7	OK
B6		3/24		52.00	52.00		1.55		50.45	935.70	10.00	0.2500	85.7	High
B7		3/24		52.00	52.00		1.70		50.30	935.85	10.00	0.2500	85.7	High
B8	У	3/25		75.00	55.00		23.80		51.20	934.95	11.00	0.1500	132.0	High
B9		3/25		52.30	52.00		1.90		50.40	935.75	11.00	0.2500	94.3	High
\leq	\bowtie	\mathbb{X}	> <	754.10	730.05	4.00	62.40		695.70	> <	$\geq <$	\mathbb{N}	> <	$\geq \leq$

25

Record Keeping

- 1. "Actual Length Placed in Leads"
 - This is the length the Contractor opts to use
 - It is used to calculate weight of pile for use in the bearing formula
 - When driving first starts, the "Actual Length Placed in Leads" is equal to the length picked up in the leads
 - can change as driving progresses if splices are made

- 2. "Actual Length Placed in Leads"
 - a. If bearing is not achieved and a splice is required, the <u>new</u> value for "Actual Length Placed in Leads" becomes:
 - The original length placed in the leads <u>plus</u> the length of pile spliced onto it.

27

Example 1

- 45 feet picked up to start.
- 15 feet spliced on and driven to achieve bearing.
- 60 feet = "Actual Length Placed in Leads"

- 3. "Actual Length Placed in Leads"
 - b. If bearing is achieved prior to splicing and the splice is made solely to achieve plan cutoff (no more driving to be done on the pile), the "Actual Length Placed in Leads" remains the original length in the leads
 - In this situation the "Ordered and Accepted Length" (original length + splice length) is greater than the "Length Placed in Leads"

29

Situations in which the "Ordered and Accepted" length will differ from the plans

• 4. Ordered and Accepted

2015 Specifications 704.4a

 The order list is the same as the estimated quantity (number and length of piles) shown in the Contract Documents.

- 5. Ordered and Accepted
 - Typically, is the length the Engineer instructs the Contractor to use
 - i.e. the length of pile indicated on the plans
 - But in situations the "Ordered and Accepted" length will differ from the plans

31

Example 2

- 25 feet picked up and driven to bearing
- 2 feet spliced on to bring the pile top up to cut off elevation, but no more driving occurred
- "Actual Length Placed in Leads" = 25 feet
- "Ordered and Accepted Length" = 27 feet
- "Length Left in Foundation" = 27 feet

Ordered and Accepted

Pile No.	Test Pile	Date	Varied Plan Cutoff Elev.	Actual Length in Leads	Ordered & Accepted	Spliced After Drive	Actual Cutoff	Pay Splices	Length Left in Footing	Pile Tip Elev.	Stroke (Drop of Hammer)	Average Penetration (inches)	Computed Bearing Power	Range
A1		3/20	1000.000	30.00	25.00		5.25		24.75	975.25	9.00	0.2500	77.1	High
Α2		3/20		28.00	26.75		1.25	1	26.75	959.40	9.50	0.3000	71.3	OK
A3	у	3/20		29.00	28.00		3.25		25.75	960.40	10.00	0.2000	100.0	High
Α4		3/20		25.30	25.30		0.00		25.30	960.85	10.00	0.3500	66.7	OK
A5		3/20		25.00	25.00		1.50		23.50	962.65	10.00	0.2500	85.7	High
Α6		3/20		25.00	25.00		3.00		22.00	964.15	11.00	0.3000	82.5	High
Α7		3/20		25.00	25.00		1.70		23.30	962.85	9.50	0.3000	71.3	OK
A8		3/20		25.00	25.00		1.70		23.30	962.85	10.00	0.3500	66.7	OK
Α9		3/20		25.00	27.00	2.00	0.00	1	27.00	959.15	10.00	0.2500	85.7	High
A10		3/20	l	25.52	25.00		1.40		24.10	962.05	10.00	0.2500	85.7	High
B1		3/20		52.00	52.00		1.90		50.10	936.05	10.00	0.2500	85.7	High
B2		3/20		52.00	52.00		3.50		48.50	937.65	11.00	0.2500	94.3	High
В3		3/24		52.00	52.00		4.00		48.00	938.15	9.00	0.3000	67.5	OK
B4		3/24		02,00	52,00		5.00		47.00	939.15	10.00	0.3000	75.0	High
B5		3/24		52.00	54.00	2.00	0.00	1	54.00	932.15	10.00	0.3500	66.7	OK
B6		3/24		52.00	E2.00		1.55		50.45	935.70	10.00	0.2500	85.7	High
В7		3/24		52.00	52.00		1.70		50.30	935.85	10.00	0.2500	85.7	High
B8	У	3/25		75.00	55.00		23.80		51.20	934.95	11.00	0.1500	123.5	High
B9		3/25		52.30	52.00		1.90		50.40	935.75	11.00	0.2500	94.3	High
\geq	X	$\geq \leq$	><	754.10	730.05		62.40		695.70	> <	><	> <	> <	> <

33

Situations in which the "Ordered and Accepted" length will differ from the plans

- 6. Ordered and Accepted
 - a. If the length listed on the plans is too short and additional pile length is needed, the contractor is authorized to add the additional length.
 - "Ordered and Accepted" length is now equal to the original length on the plans **plus** the additional length authorized to be spliced on

Example 3

- 45 feet listed on plans picked up and driven but bearing is not achieved
- 15 feet authorized to be spliced on
- 60 feet = "Ordered and Accepted Length"
- 60 feet = "Actual Length Placed in Leads"

35

Situations in which the "Ordered and Accepted" length will differ from the plans

- 7. Ordered and Accepted
 - b. If the Contractor opts to use a longer pile than called for and the additional length, in whole or part, is needed to achieved bearing and "Plan Cutoff Elevation", the "Ordered and Accepted" length is equal to the length of pile left in place.
 - Now "Ordered and Accepted" length and "Length Left in Foundation" are equal.

Example 4

- 45 feet called for on the plans
- Contractor picks up a 50 footer to drive
- 48 feet was needed to achieve bearing
- "Ordered and Accepted Length" = "Length Left in Foundation" = 48 feet
- "Actual Length Placed in Leads" = 50 feet

37

Record Keeping

- 8. Actual Measured Cutoff
 - The actual length of pile cutoff is the difference between the "Actual Length in Leads" length and what is left in footing.

Actual Measured Cutoff

Pile No.	Test Pile	Date	Varied Plan Cutoff Elev.	Actual Length in Leads	Ordered & Accepted	Splice After Drive	Actual Cutoff	Pay Splices	Length Left in Footing	Pile Tip Elev.	Stroke (Drop of Hammer)	Average Penetration (inches)	Computed Bearing Power	Range
A1		3/20	1000.000	30.00	25.00		5.25		24.75	975.25	9.00	0.2500	77.1	High
A2		3/20		28.00	26.75		1.25	1	26.75	959.40	9.50	0.3000	71.3	OK
А3	У	3/20		29.00	28.00		3.25		25.75	960.40	10.00	0.2000	100.0	High
Α4		3/20		25.30	25.30		0.00		25.30	960.85	10.00	0.3500	66.7	OK
Α5		3/20		25.00	25.00		1.50		23.50	962.65	10.00	0.2500	85.7	High
A6		3/20		25.00	25.00		3.00		22.00	964.15	11.00	0.3000	82.5	High
Α7		3/20		25.00	25.00		1.70		23.30	962.85	9.50	0.3000	71.3	OK
A8		3/20		25.00	25.00		1.70		23.30	962.85	10.00	0.3500	66.7	OK
Α9		3/20		25.00	27.00	2.00	0.00	1	27.00	959.15	10.00	0.2500	85.7	High
A10		3/20		25.50	25.00		1.40		24.10	962.05	10.00	0.2500	85.7	High
B1		3/20		52.00	52.00		1.90		50.10	936.05	10.00	0.2500	85.7	High
B2		3/20		52.00	52.00		3.50		48.50	937.65	11.00	0.2500	94.3	High
В3		3/24		52.00	52.00		4.00		48.00	938.15	9.00	0.3000	67.5	OK
B4		3/24		52.00	52.00		5.00	_	47.00	939.15	10.00	0.3000	75.0	High
B5		3/24		52.00	54.00	2.00	0.00	1	54.00	932.15	10.00	0.3500	66.7	OK
В6		3/24		52.00	52.00		1.55		50.45	935.70	10.00	0.2500	85.7	High
В7		3/24		52.00	52.00		1.70		50.30	935.85	10.00	0.2500	85.7	High
B8	У	3/25		75.00	55.00		23.80		51.20	934.95	11.00	0.1500	123.5	High
B9		3/25		52.30	52.00		1.90		50.40	935.75	11.00	0.2500	94.3	High
						,	$\overline{}$							
														-
\simeq	X	> <	\leq	754.10	730.05		62.40		695.70	${\scriptstyle{>}<}$	$\geq <$		\sim	><

39

Record Keeping

- 9. Actual Measured Cutoff
 - a. The "Actual Measured Cutoff" may not equal "Pay Cutoff"
 - If the Contractor elects to use a longer pile than was specified, the length in excess of the length specified is considered "Non Pay Cutoff"

- 10. Splicing Cutoff on another pile
 - The "Actual Measured Cutoff" from one pile may be spliced in part, or in whole, to another pile.
 - It may become part of the "Ordered and Accepted Length" on the pile that received the splice
 - This depends on the length of pile the Contractor was directed to use.
- Be sure to track where the cutoff came from and where it is going to. If the cutoff from one pile is used in a different bent, then you will need to address that in the remarks of both locations.

41

Length Left in Foundation

Pile No.	Test Pile	Date	Varied Plan Cutoff Elev.	Actual Length in Leads	Ordered & Accepted	Spliced After Drive	Actual Cutoff	Pay Splices	Length Left in Footing	Pile Tip Elev.	Stroke (Drop of Hammer)	Average Penetration (inches)	Computed Bearing Power	Range
A!		3/20	1000.000	30.00	25.00		5.25		24.75	975.25	9.00	0.2500	77.1	High
A2		3/20		28.00	26.75		1.25	1	26.75	959.40	9.50	0.3000	71.3	OK
A3	У	3/20		29.00	28.00		3.25		25.75	960.40	10.00	0.2000	100.0	High
Α4		3/20		25.30	25.30		0.00		25.30	960.85	10.00	0.3500	66.7	OK
A5		3/20		25.00	25.00		1.50		23.50	962.65	10.00	0.2500	85.7	High
A6		3/20		25.00	25.00		3.00		22.00	964.15	11.00	0.3000	82.5	High
A7		3/20		25.00	25.00		1.70		23.30	962.85	9.50	0.3000	71.3	OK
A8		3/20		25.00	25.00		1.70		23.30	962.85	10.00	0.3500	66.7	OK
A9		3/20		25.00	27.00	2.00	0.00	1	27.00	959.15	10.00	0.2500	85.7	High
A10		3/20		25.50	25.00		1.40		24.10	962.05	10.00	0.2500	85.7	High
B1		3/20		52.00	52.00		1.90		50.10	936.05	10.00	0.2500	85.7	High
B2		3/20		52.00	52.00		3.50		48.50	937.65	11.00	0.2500	94.3	High
ВЗ		3/24		52.00	52.00		4.00		48.00	938.15	9.00	0.3000	67.5	OK
B4		3/24		52.00	52.00		5.00		47.00	939.15	10.00	0.3000	75.0	High
B5		3/24		52.00	54.00	2.00	0.00	1	54.00	932.15	10.00	0.3500	66.7	OK
B6		3/24		52.00	52.00		1.55		50.45	935.70	10.00	0.2500	85.7	High
B7		3/24		52.00	52.00		1.70		50.30	935.85	10.00	0.2500	85.7	High
B8	У	3/25		75.00	55.00		23.80		51.20	934.95	11.00	0.1500	132.0	High
B9		3/25		52.30	52.00		1.90		50.40	935.75	11.00	0.2500	94.3	High
) 				
\sim	\mathbf{x}	\sim		754.10	730.05	4.00	62.40		695.70	$\overline{}$	\sim		\sim	$\overline{}$

Kansas

- 11. Length left in foundation:
 - Is <u>The Pay Length:</u> The length of pile left after any cutoff is removed or the addition of a splice is made after driving to achieve the desired elevation. If splice is made after bearing is achieved, the new "Ordered and Accepted" length is equal to pay length provided the new length is equal to or greater than the plan length.

43

Pile Tip Elevation

Pile No.	Test Pile	Date	Varied Plan Cutoff Elev.	Actual Length in Leads	Ordered & Accepted	Spliced After Drive	Actual Cutoff	Pay Splices	Length Left in Footing	Pile Tip Elev.	Stroke (Drop of lammer)	Average Penetration (inches)	Computed Bearing Power	Range
A1		3/20	1000.000	30.00	25.00		5.25		24.75	975.25	9.00	0.2500	77.1	High
A2		3/20		28.00	26.75		1.25	1	26.75	959.40	9.50	0.3000	71.3	OK
A3	у	3/20		29.00	28.00		3.25		25.75	960.40	10.00	0.2000	100.0	High
Α4		3/20		25.30	25.30		0.00		25.30	960.85	10.00	0.3500	66.7	ОК
A5		3/20		25.00	25.00		1.50		23.50	962.65	10.00	0.2500	85.7	High
A6		3/20		25.00	25.00		3.00		22.00	964.15	11.00	0.3000	82.5	High
Α7		3/20		25.00	25.00		1.70		23.30	962.85	9.50	0.3000	71.3	ОК
A8		3/20		25.00	25.00		1.70		23.30	962.85	10.00	0.3500	66.7	ОК
A9		3/20		25.00	27.00	2.00	0.00	1	27.00	959.15	10.00	0.2500	85.7	High
A10		3/20		25.50	25.00		1.40		24.10	962.05	10.00	0.2500	85.7	High
B1		3/20		52.00	52.00		1.90		50.10	936.05	10.00	0.2500	85.7	High
B2		3/20		52.00	52.00		3.50		48.50	937.65	11.00	0.2500	94.3	High
ВЗ		3/24		52.00	52.00		4.00		48.00	938.15	9.00	0.3000	67.5	OK
B4		3/24		52.00	52.00		5.00		47.00	939.15	10.00	0.3000	75.0	High
B5		3/24		52.00	54.00	2.00	0.00	1	54.00	932.15	10.00	0.3500	66.7	OK
B6		3/24		52.00	52.00		1.55		50.45	935.70	10.00	0.2500	85.7	High
В7		3/24		52.00	52.00		1.70		50.30	935.85	10.00	0.2500	85.7	High
B8	У	3/25		75.00	55.00		23.80		51.20	934.95	11.00	0.1500	123.5	High
В9		3/25		52.30	52.00		1.90		50.40	935.75	11.00	0.2500	94.3	High
											,			
>	\mathbb{T}			754.10	730.05		62,40		695.70		\sim	175		\sim

- 12. Pile tip elevation
 - Is typically the "plan cutoff elevation" minus the length left in foundation
 - If battered piles are used, the batter needs to be taken into account to determine the tip elevation

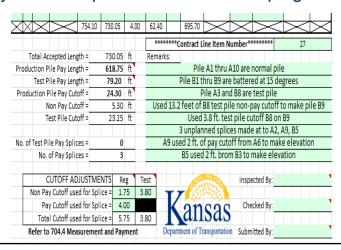
45

Stroke, Penetration, & Bearing

Pile No.	Test Pile	Date	Varied Plan Cutoff Elev.	Actual Length in Leads	Ordered & Accepted	Spliced After Drive	Actual Cutoff	Pay Splices	Length Left in Footing	Pile Tip Elev.	Stroke (Drop of Hammer)	Average Penetration (inches)	Computed Bearing Power	Range
A1		3/20	1000.000	30.00	25.00		5.25		24.75	975.25	9.00	0.2500	77.1	High
A2		3/20		28.00	26.75		1.25	1	26.75	959.40	9.50	0.3000	71.3	ОК
А3	У	3/20		29.00	28.00		3.25		25.75	960.40	10.00	0.2000	100.0	High
Α4		3/20		25.30	25.30		0.00		25.30	960.85	10.00	0.3500	66.7	OK
A5		3/20		25.00	25.00		1.50		23.50	962.65	10.00	0.2500	85.7	High
A6		3/20		25.00	25.00		3.00		22.00	964.15	11.00	0.3000	82.5	High
Α7		3/20		25.00	25.00		1.70		23.30	962.85	9.50	0.3000	71.3	ОК
A8		3/20		25.00	25.00		1.70		23.30	962.85	10.00	0.3500	66.7	ОК
Α9		3/20		25.00	27.00	2.00	0.00	1	27.00	959.15	10.00	0.2500	85.7	High
A10		3/20		25.50	25.00		1.40		24.10	962.05	10.00	0.2500	85.7	High
B1		3/20		52.00	52.00		1.90		50.10	936.05	10.00	0.2500	85.7	High
B2		3/20		52.00	52.00		3.50		48.50	937.65	11.00	0.2500	94.3	High
В3		3/24		52.00	52.00		4.00		48.00	938.15	9.00	0.3000	67.5	OK
B4		3/24		52.00	52.00		5.00		47.00	939.15	10.00	0.3000	75.0	High
B5		3/24		52.00	54.00	2.00	0.00	1	54.00	932.15	10.00	0.3500	66.7	ОК
В6		3/24		52.00	52.00		1.55		50.45	935.70	10.00	0.2500	85.7	High
В7		3/24		52.00	52.00		1.70		50.30	935.85	10.00	0.2500	85.7	High
В8	у	3/25		75.00	55.00		23.80		51.20	934.95	11.00	0.1500	123.5	High
В9		3/25		52.30	52.00		1.90		50.40	935.75	11.00	0.2500	94.3	High
	Ш										Ļ			
\sim	IXI	\sim	I >	754.10	730.05		62,40	1	695.70	>	1><	>=<		\sim

- 13. Stroke or Drop of Hammer
 - · Observed by the inspector and recorded
- 14. Average penetration
 - The penetration per 20 blows divided by 20
 - Example 5 inches per 20 blows = .25 inch per blow
 - Could be less than 20 blows i.e. 5 blows.
- 15. Computed Bearing capacity of pile
 - Computed by the inspector or computer
 - Note: All inspectors are required to know how to manually calculate bearing using the bearing formula

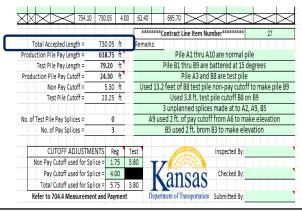
47


Record Keeping

- 16. "Totals" -- Total each column
 - "Actual length placed in leads"
 - "Ordered and accepted"
 - "Actual measured cutoff"
 - "Length left in foundation"

Pile No.	Test Pile	Date	Varied Plan Cutoff Elev.	Length in	Ordered & Accepted	Spliced After Drive	Actual Cutoff	Pay Splices	Length Left in Footing	Pile Tip Elev.	Stroke (Drop of Hammer)	Average Penetration (inches)	Computed Bearing Power	Range
41	П	3/20	1000.000	30.00	25.00		5.25		24.75	975.25	9.00	0.2500	77.1	High
42	П	3/20		28.00	26.75		1.25	1	26.75	959.40	9.50	0.3000	71.3	OK
43	У	3/20		29.00	28.00		3.25		25.75	960.40	10.00	0.2000	100.0	High
44	П	3/20		25.30	25.30		0.00		25.30	960.85	10.00	0.3500	66.7	OK
45	П	3/20		25.00	25.00		1.50		23.50	962.65	10.00	0.2500	85.7	High
46	П	3/20		25.00	25.00		3.00		22.00	964.15	11.00	0.3000	82.5	High
47	П	3/20		25.00	25.00		1.70		23.30	962.85	9.50	0.3000	71.3	OK
48	П	3/20		25.00	25.00		1.70		23.30	962.85	10.00	0.3500	66.7	OK
49	П	3/20		25.00	27.00	2.00	0.00	1	27.00	959.15	10.00	0.2500	85.7	High
410	П	3/20		25.50	25.00		1.40		24.10	962.05	10.00	0.2500	85.7	High
31	П	3/20		52.00	52.00		1.90		50.10	936.05	10.00	0.2500	85.7	High
32	П	3/20		52.00	52.00		3.50		48.50	937.65	11.00	0.2500	94.3	High
33	П	3/24		52.00	52.00		4.00		48.00	938.15	9.00	0.3000	67.5	OK
34	П	3/24		52.00	52.00		5.00		47.00	939.15	10.00	0.3000	75.0	High
35	П	3/24		52.00	54.00	2.00	0.00	1	54.00	932.15	10.00	0.3500	66.7	OK
36	П	3/24		52.00	52.00		1.55		50.45	935.70	10.00	0.2500	85.7	High
37	П	3/24		52.00	52.00		1.70		50.30	935.85	10.00	0.2500	85.7	High
38	у	3/25		75.00	55.00		23.80		51.20	934.95	11.00	0.1500	123.5	High
39	П	3/25		52.30	52.00		1.90		50.40	935.75	11.00	0.2500	94.3	High
	Н													
	П													
	Н													
\times	X	> <	> <	754.10	730.05		62.40		695.70	\sim	\sim	\sim	\sim	\sim

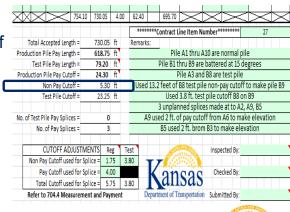
Summary of driven pile from Record Keeping section


49

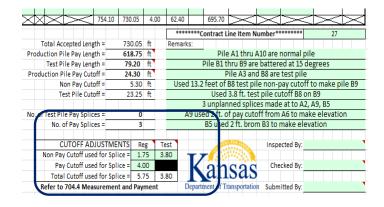
Summary Section

• 17. "Accepted Length"

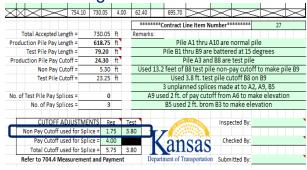
Equals the total from the "Ordered and Accepted"


column

18. "Non-Pay Cutoff"


- Represents the length of pile in excess of the length specified and was cutoff
- Equals the "Actual Measured Cutoff" column minus any "Pay Cutoff"

Kansas Department of Transportation


51

Non-Pay Cutoff used for Splice, Pay Cutoff used for Splice, & Cutoff used for Splice

- 19. "Non-Pay Cutoff Used for Splice"
 - Is the length of pile that was originally considered part of "Non-Pay Cutoff", but was spliced to another pile to achieve "Plan Cutoff Elevation" and/or bearing

53

Example 9

- 45 feet called for on the plans
- · Contractor picks up a 50 footer to drive
- 45 feet was needed to achieve bearing
 - Contractor cuts off the other 5 feet as "Non Pay Cut Off"
- This 5 feet is spliced to another pile and becomes "Non Pay Cut Off Used For Splice"

- 17. Pay cutoff used for splice
 - Is the length that was originally considered part of the "Pay Cutoff" from one pile but was spliced to another pile to achieve "Plan Cutoff Elevation" and/or bearing.
 - Since this cutoff was previously considered "Pay Cutoff" deduct it from the "Pay Cutoff" total so it is not paid for as "Pay Length" and "Pay Cutoff".
 - If came from different location, the first report will need to be amended to track pile cutoff to new location.

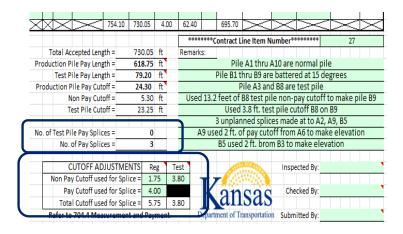
55

Example 10

- 45 feet listed on plans picked up and driven but bearing is not achieved
- 15 feet authorized to be spliced on but only 10 feet can be driven
- 5 feet has to be cut off as "Pay Cut Off"
- This 5 feet is spliced on another pile and becomes "Pay Cut Off Used For Splice" and is now "Pay Length"

Example 10 continued

Since this cutoff was previously considered "Pay Cutoff" deduct it from the "Pay Cutoff" total so it is not paid for as "Pay Length" and "Pay Cutoff".


57

Summary Section

- 18. "Cutoff Used for Splice"
 - Equals the "Non-pay Cutoff Used for Splice" plus "Pay Cutoff Used for Splice"

Number of Pay Splices, Pay Length, & Pay Cutoff

59

Summary Section

- 19. "Number Pay Splices"
 - Total number of splices ordered by KDOT to extend the pile beyond the original "Ordered and Accepted Length"
 - Splices made for contractor's convenience are not considered pay splices

- 20. "Pay Length"
 - Equals the total from the "Length Left in Foundation" column
- 21. "Pay Cutoff" equals the

"Actual Length in Leads"
minus "Length Left in Foundation"
minus "Test & Non Pay Cutoff"

61

Remarks ********Contract Line Item Number******** Total Accepted Length = 730.05 ft Production Pile Pay Length = 618.75 ft Pile A1 thru A10 are normal pile Test Pile Pay Length = **79.20** ft Pile B1 thru B9 are battered at 15 degrees Production Pile Pay Cutoff = 24.30 ft Pile A3 and B8 are test pile Non Pay Cutoff = 5.30 ft Used 13.2 feet of B8 test pile non-pay cutoff to make pile B9 Test Pile Cutoff = Used 3.8 ft. test pile cutoff B8 on B9 3 unplanned splices made at to A2, A9, B5 No. of Test Pile Pay Splices = A9 used 2 ft. of pay cutoff from A6 to make elevation No. of Pay Splices = B5 used 2 ft. brom B3 to make elevation CUTOFF ADJUSTMENTS Reg Non Pay Cutoff used for Splice = 1.75 3.80 Pay Cutoff used for Splice = 4.00 Total Cutoff used for Splice = 5.75 3.80 Checked By: Refer to 704.4 Measurement and Payment Department of Transportation Submitted By:

- 22. "Remarks"—provide a recap of <u>all</u> splicing information and unique information
 - a. Indicate if it was pay or non-pay splice

 (i.e. was it ordered by KDOT or was it the Contractors option)
 - b. Which pile the splice came from
 - · c. Which pile the splice was spliced to
 - d. The length of the splice pile
 - e. Indicate if the splice was made after bearing was achieved
 - f. Other information as you see fit

63

Continuous Log Section

- Just below the Summary Section.
- · Used for Test piles when required.

Pile No.	Total Pile Length	Length	Driven To	Number of Blows (Blow Count)	Drop of Hammer (Stroke) (ft.)	Average Penetration (in.)	Computed Resistance (tons)	Computed vs. Specified
_	Length	0.00		(Blow count)	(otroke) (iti)	()	(10115)	opcomea
		0.00						

Log of Continuous Pile Driving and/or Test Pile Sheet

	Refer t	o 704.4	Measur	ement and Payment		Submitted	By:	•
						Cour	nty	Riley
	Abu	tment	1	Pier		Proje	ect K-XXX	(X-01 (103)
						(Br. No.) and/or	Sta (103)	10+513.17
ě.	Total					Average	Computed	Computed
Ž	Pile	Length	Driven	Number of Blows	Drop of Hammer	Penetration	Resistance	vs.
Pile	Length	From	To	(Blow Count)	(Stroke) (ft.)	(in.)	(tons)	Specified
A3	29	1.25	4.50	7	3.00	5.57	1.6	Low
A3	29	4.50	7.00	10	3.00	3.00	2.9	Low
A3	29	7.00	11.00	10	3.00	4.80	1.8	Low
A3	29	11.00	14.50	10	3.00	4.20	2.1	Low
A3	29	14.50	17.00	15	3.00	2.00	4.3	Low
A3	29	17.00	19.00	15	3.50	1.60	6.2	Low
A3	29	19.00	20.00	20	3.50	0.60	15.0	Low
A3	29	20.00	21.00	23	3.50	0.52	16.9	Low
A3	29	21.00	22.00	23	3.50	0.52	16.9	Low
A3	29	22.00	23.00	24	4.00	0.50	20.0	Low
A3	29	23.00	24.00	25	4.00	0.48	20.7	Low
A3	29	24.00	24.50	22	4.50	0.27	36.5	Low
A3	29	24.50	25.00	23	4.50	0.26	37.5	Low
A3	29	25.00	25.25	26	4.75	0.12	64.8	Low
A3	29	25.25	25.60	27	4.75	0.16	54.8	Low
A3	29	25.60	25.80	20	5.25	0.12	71.6	Ok
A3	29	25.80						

65

Driving Information

- 23. Log of Continuous pile driving and/or test pile
 - Record a continuous pile driving record for a representative pile on each abutment and pier footing on the structure
 - The record should be inclusive from the beginning of drive to the final bearing

When filling out the "Log of Continuous pile driving"

- For structures under 755 feet in length, a continuous pile driving record is required on 2 footings, one in the abutment and one in the pier (opposite ends)
- For structures over 755 feet in length a continuous pile driving record is required on 3 footings, one abutment and two pier footings
- If the piers have no piling then information will be recorded on one pile from each abutment

67

When filling out the "Log of Continuous pile driving"

- a. Record any "set" length
 - Pile set with a gravity hammer from 0 to 16 feet
- After pile is set, record 1 foot increments
- Record the fractional increment just prior to achieving final bearing
 - 47 to 47.3 feet

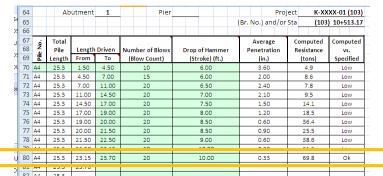
When filling out the "Log of Continuous pile driving"

- b. Record the number of blows per 1-foot increments
- c. Record the observed hammer stroke

69

When filling out the "Log of Continuous pile driving"

- d. Record Average penetration per blow
 - The total 1 foot increment divided by the number of blows for that foot
 - Example: from 6.0 to 7.0 ft. you had 16 blows
 - 1.0 ft/16 blows = 12 inches/16 blows = .75 inch/blow
- e. Record Computed bearing capacity of pile

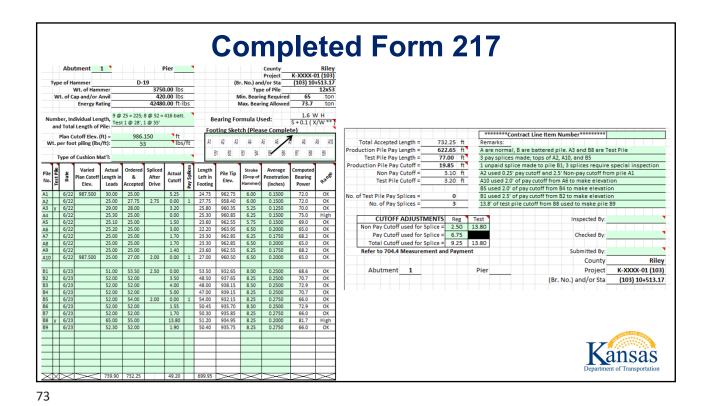

When filling out the "Log of Continuous pile driving"

• f. Under the last entry (the fractional increment)

Record: 1. movement in the last 20 blows (.55 ft)

2. average penetration per blow (0.33 in)

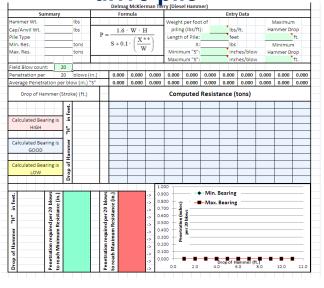
3. the associated bearing (69.8 tons)



71

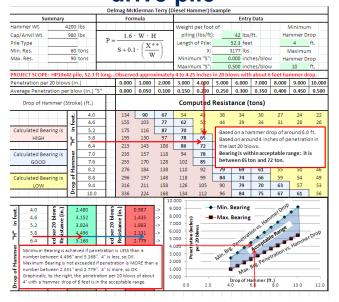
Driving Information

- 24. Distribution list--Copies to appropriate personnel
- 25. Signatures--Always
 - The individual that inspected the pile drive operation
 - The individual that checked any computations

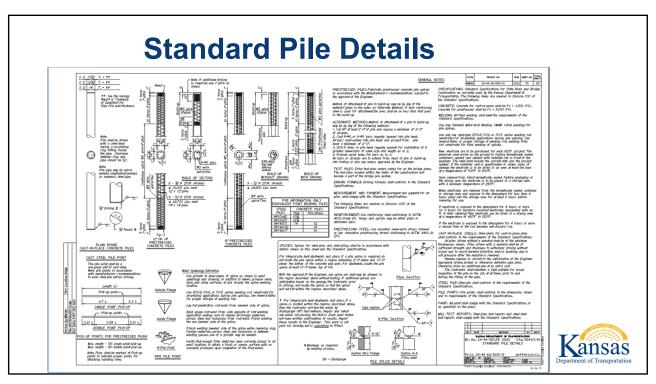


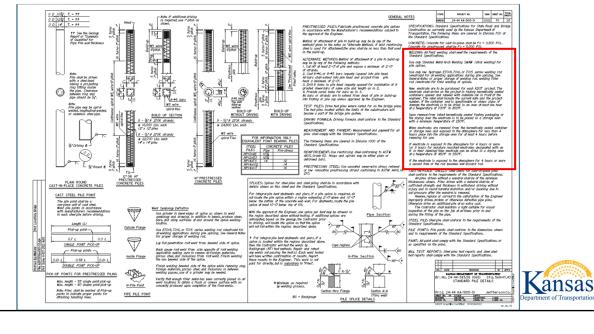
Form 217 B-the chart-make before you begin to drive pile

Ente	r known data	in all available cel	lls.	
	General I	nformation		
If you can not see colored tabs "View" tab, "Arrang				
		to all sheets in th		up.
Hammer Information		1	JECT INFORM	ATION
Hammer information		PRO	JECT INFORM	ATION
Type of Hammer	•	Cou	inty	
Type of Hammer		Pro		
Hammer Weight	lbs	(Br. No.) and/or		
Cap and/or Anvil Weight	lbs	Туре	of Pile	1
Energy Rating	ft-lbs	Plan Note 0	Overdrive %	%
		Min. Resistant		tons
		Max. Resistan	ce Allowed	tons
Guide to COMPLETIN	IG the Fiel	d Pile Driving	Guide - For	m 217B
All formulas use exactly what	is entered in	the cells.		
Hover the mouse cursor over a				



Form 217 B-the chart-make before you begin to drive pile





Welded Pile Splices

Standard Pile Details

Standard Pile Details

thod of attachment of pile to build-up may be by any of the thods' given in the notes on "Alternate Methods. If mild reinforcing belis used for attachment, the area shall be no less than that used

TERNATE METHODS: Method of attachment of a pile to build-up y be by any of the following methods: Cut off at least 2'-0" of pile and expose a minimum of 2'-0"

strains. Cast 8-46, or 8-45 bars (equally (spaced into pile head, bars shall extend into pile head and project from pile ad a minimum of 2-0". Drill 8 holes in pile head (equally spaced) for installation of 8

Justed dowel bars of same size and length as in 2.

Provide cored holes for bars as in 3.

bars or strands are to extend from head of pile or build-up o footing or pile cap unless approved by the Engineer.

EST PILES: Drive test piles where called for on the bridge plans. he test piles located within the limits of the substructure will scome a part of the bridge pile system.

RIVING FORMULA: Driving formula shall conform to the Standard

EASUREMENT AND PAYMENT: Measurement and payment for all les shall comply with the Standard Specificatio

he following items are covered in Division 1000 of the tandard Specifications:

EINFORCEMENT: Use reinforcing steel conforming to ASTM 515, Grade 60. Hoops and spirals may be either plain or sformed bars.

RESTRESSING STEEL: Use uncoated seven-wire stress relieved low relaxation prestressing strand conforming to ASTM A416, Gr. 70,

Transportation. The following items are covered in Division 700 of

CONCRETE: Concrete for cast-in-place shall be f'c = 3,500 PSI.. Concrete for prestressed shall be f'c = 5,000 PSI.

WELDING: All field welding shall meet the requirements of the Standard Specifications.

Use only Shielded Metal Arch Welding SMAW (stick welding) for pile splices.

Use only low hydrogen E7018, 7016, or 7015 series welding rod (electrode) for all welding applications during pile splicing. See General Nates or proper storage of welding rod. welding filler rod (electrode) for field welding af splices.

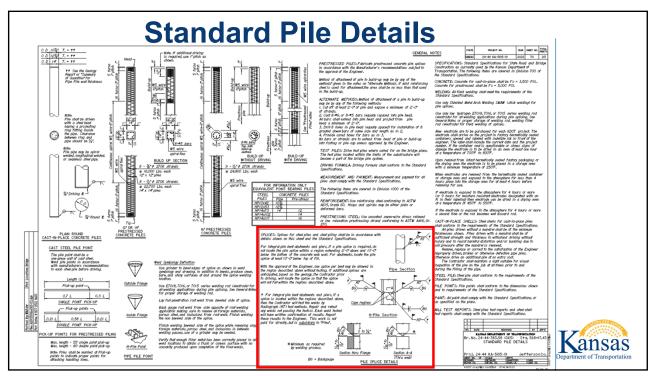
New electrode are to be purchased for each KDOT project. The electrode shall arrive on the project in factory hermetically sealed containers opened and labeled with indelible ink in front of the engineer. The label shall include the current date and the project number. If the container sed is questionable or shows signs of damage the electrode is to be dried in an oven at least one hour at a temperature of 700°F to 800°F.

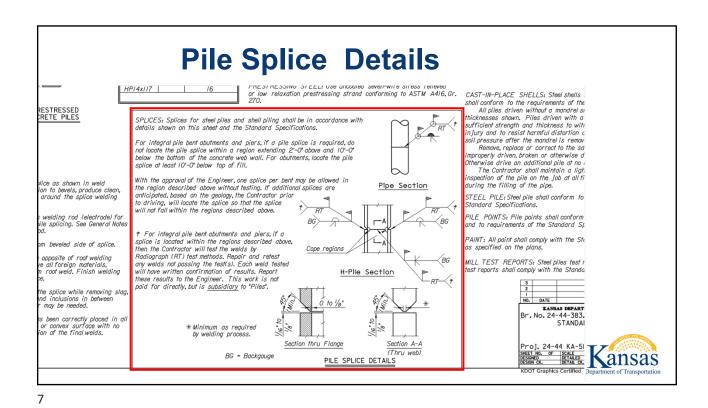
Upon removal from intact hermetically sealed factory packaging or the drying oven the electrode is to be placed in a storage oven with a minimum temperature of 250°F.

When electrodes are removed from the hermetically sealed container or storage oven and exposed to the atmosphere for less than 4 hours place into the storage oven for at least 4 hours before removing for use.

If electrode is exposed to the atmosphere for 4 hours or more (or 9 hours for moisture resistant electrodes designated with an R in their labeling) then electrode can be dried in a drying oven at a temperature of 450°F to 550°F.

CAST-IN-PLACE SHELLS: Steel shells for cast-in-place piles shall conform to the requirements of the Standard Specifications

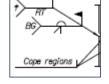



KDOT H-Pile splices

Weld Symbology Meaning

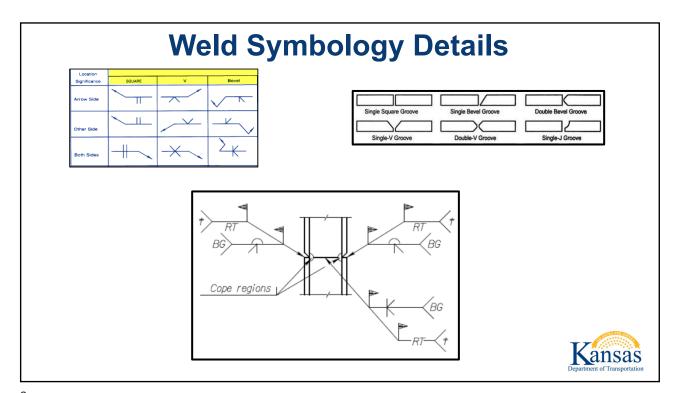
Solid Flag pointing away from work area

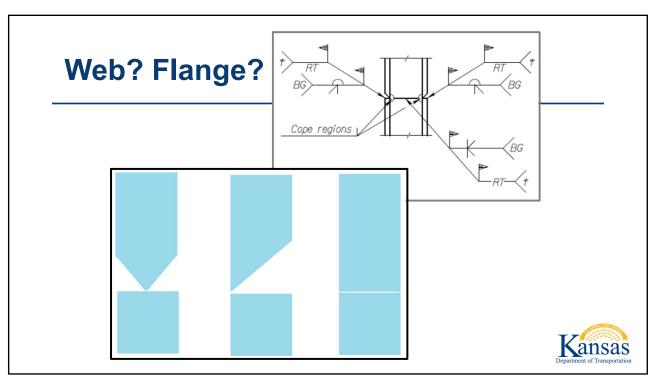
Field Weld Symbol

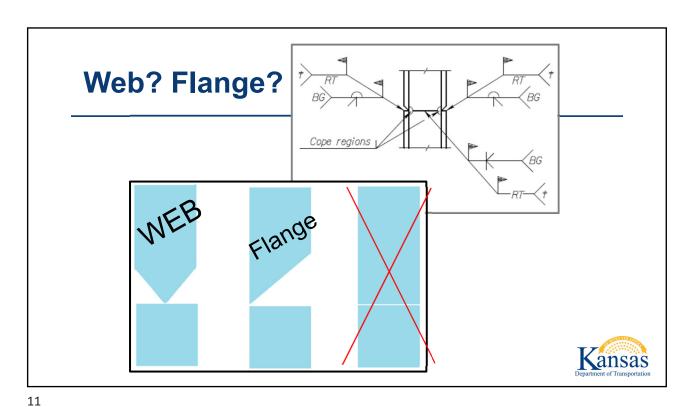

Half circle

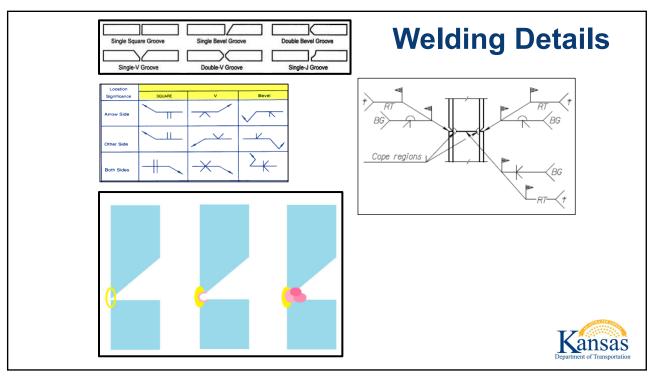
Filled is: Melt Through

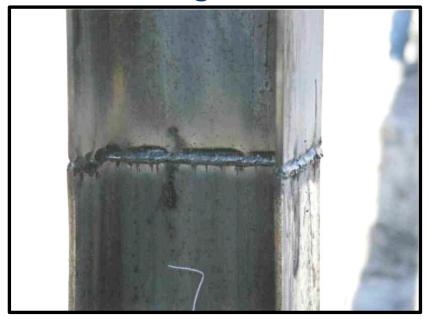
Unfilled is: Backing or Backgouge




•Double Bevel Groove:

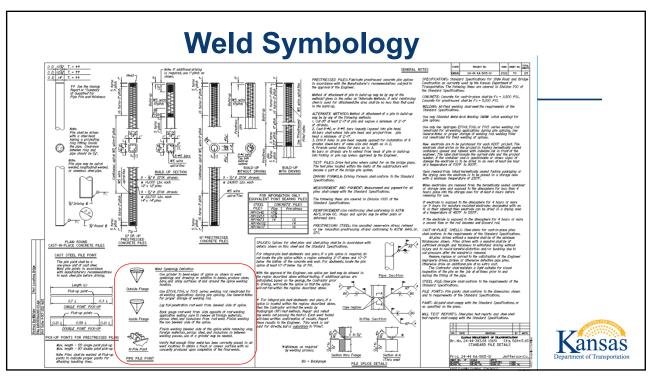





Welding Details

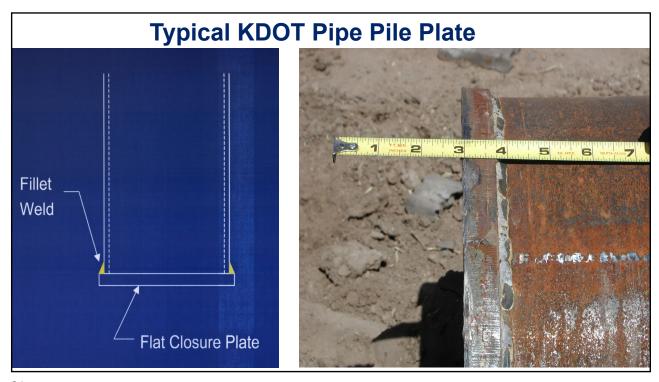
13

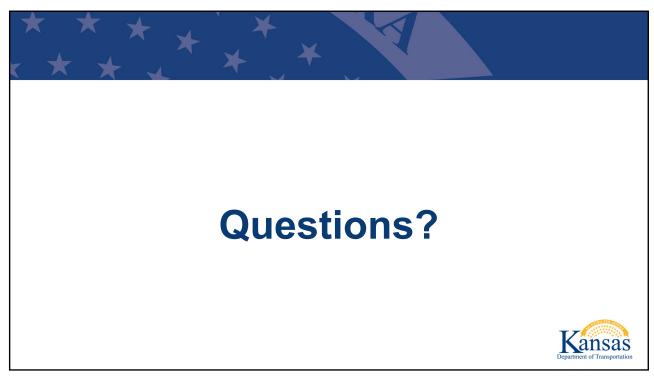
Welding Details

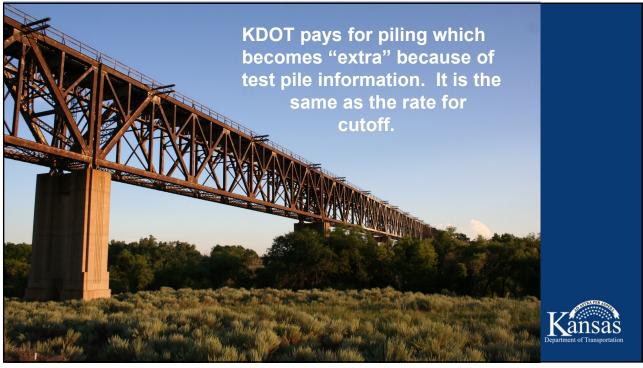


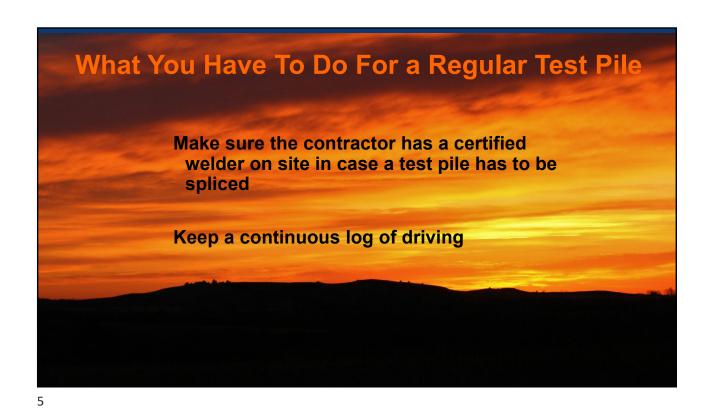
C-Clamps and Boards Figure 1 of The Inspectation

What NOT to do


Closed End Pipe Pile


Using Conical Points




Test Piles

Driven before main production piles to get an idea of how piles will behave.

What You Have To Do For a Regular Test Pile 1

Avoid delays once driving has started

Finish driving the test pile in one day unless you need to do a restrike

Uh-Oh....

If pile doesn't get resistance within roughly 2 feet of plan elevation, try a restrike

Call the Regional Geology Office for help

7

Pile Restrike Procedure from 704.4 (e)

Wait overnight

Warm up hammer far from test pile

Immediately restrike test pile for 30 blows or until it moves 4 inches, whichever comes first

Pile Restrike Procedure

Record penetration for every 5 blows

If pile moves less than ½ inch, stop restrike after 20 blows

Calculate resistance based on average penetration for first 5 blows

9

Pile Restrike Procedure 1

If calculated resistance is still too low, splice and resume driving

Why, you little...!!

Pile Restrike Procedure 2

If you get enough resistance with the restrike, then we will use that elevation (plan pile tip elevation) for the production piles

11

Tell your boss how the test pile went

Test Pile (Special)

A fancy name for a test pile that is monitored by the Pile Driving Analyzer

13

Test Pile (Special)

Contact the Topeka Geology Office when the project gets going, just to warn John.

(785) 291-3861

Forward him the hammer data when you get it from the contractor.

You are required to contact the Topeka Geology Office (John) a minimum of 5 working days before the Test Pile Special.

(785) 291-3861

15

What to Expect When You're Expecting John...

Test Pile (Special)

We Will Need Beforehand:

Hammer type and size

Pile type, size, and grade

Test pile locations

Cut-off elevations

Plan design pile tip elevations

If pile bents, the bottom of web wall elevation

17

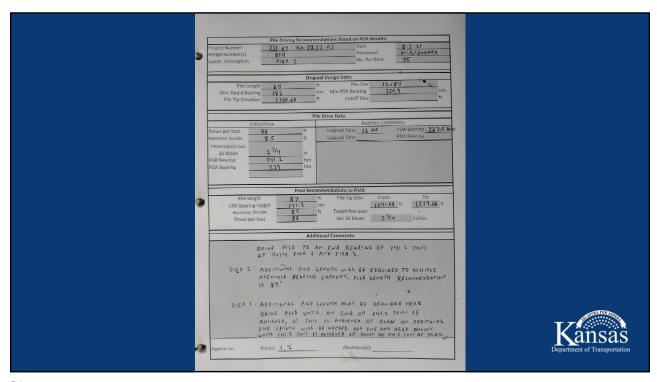
Remind the contractor that a restrike is required with a Test Pile (Special).
This may be an overnight restrike.

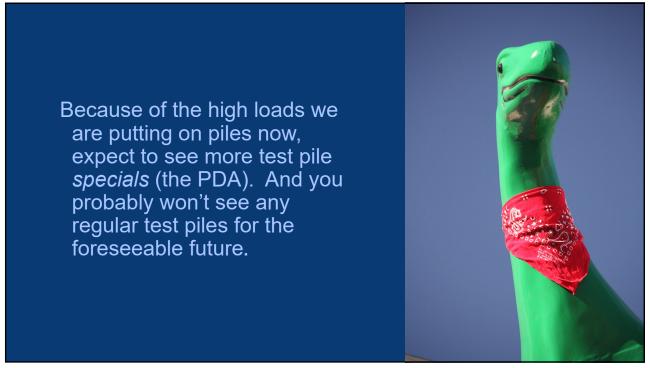
Test Piles (Special)

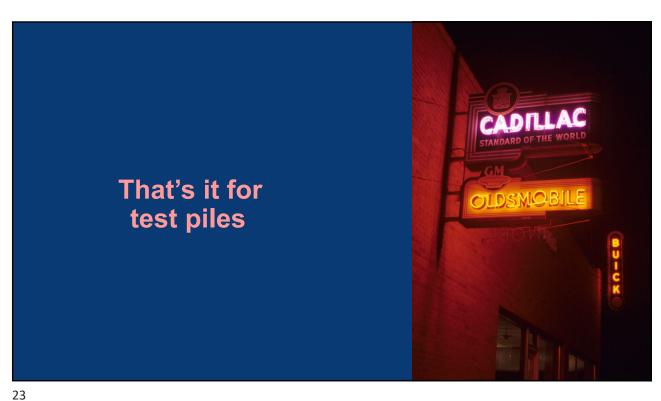
On the day of the test pile we'll need:

Ground elevation at each test pile location

Maybe whiskey and beer, depending on how it goes...




19


Keep a continuous log of driving

PDA crew will tell you what elevation to drive to, or what resistance you need using the Pile Drive Formula

Test Pile (Special) and Restrike Testing

1

What is a Test Pile (Special)?

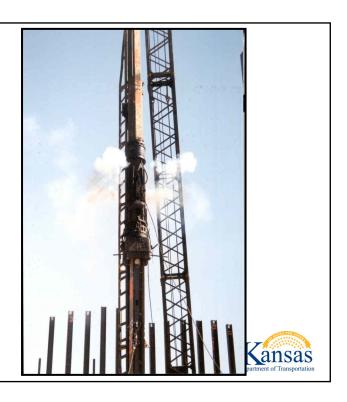
- Similar to a Test Pile except we monitor pile installation using the Pile Driving Analyzer
- Inspector still performs their roll
- Ususally one Test Pile (Special) for one Abutement and one Pier
 - Dependent geologic variability, pile loads, and number of piers

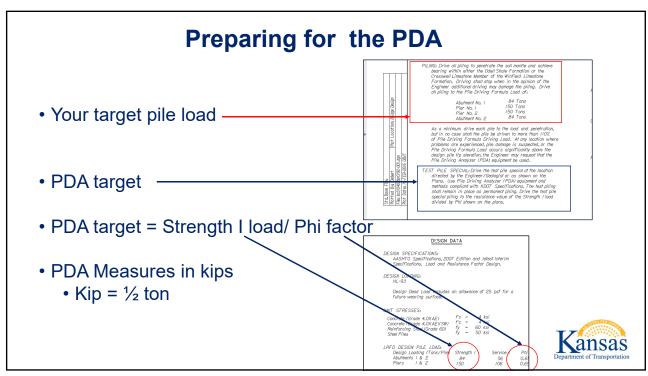
Dynamic Testing at a Glance

- A ram impacts the pile top
- The pile top is compressed at the instant of impact
- A stress wave travels through the pile
- The wave is partially reflected back up the pile due to
 - soil resistance---representing capacity
 - pile property change
 - or at the pile toe
- From the reflected waves PDA calculates capacity

3

Measures

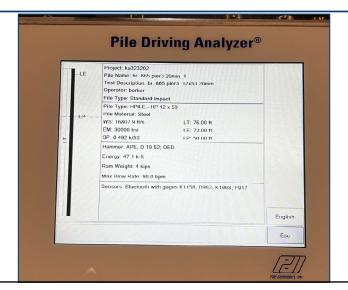

- Evaluation of the Drive System Performance
- Calculation of the Driving Stresses
 During Installation
- Assessment of Pile Integrity
 - Damage



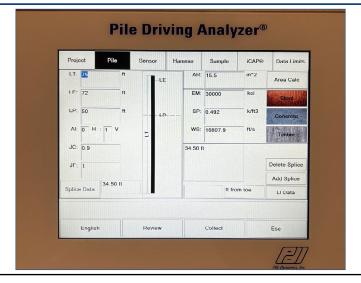
Measurements Cont.

- Assessment of the Pile Capacity and Soil Conditions
- Allows You to Discount any Bearing Capacity in the Scour Zone
- Allows You to See Shaft Versus Toe Capacity on the Pile

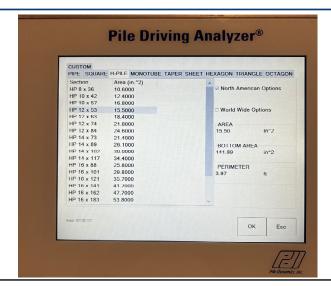
5

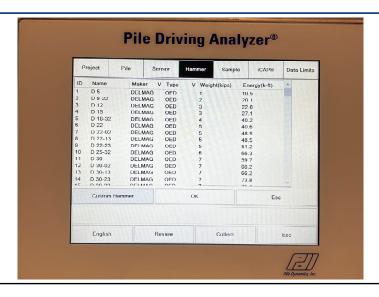

Before the PDA

- Determine depth to bedrock
- Determine plan tip depth
- Test pile has been clearly marked by the foot
- Communication between Geology, inspectors, and foreman
 - You (and a helper) keep track of the blows/foot and stroke of hammer
 - Foreman will be marking the pile every 5 or 10 blows
 - Marking depth will be determined by testing crew


7

PDA Set-up


PDA Set-Up

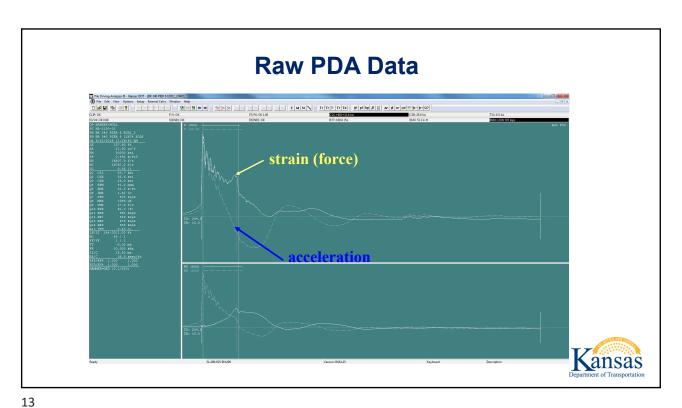

9

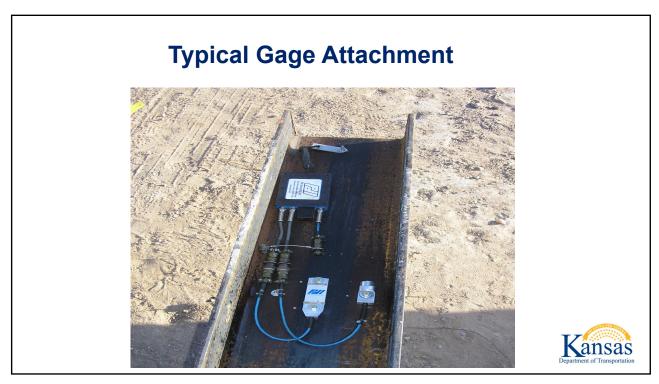
PDA Set-Up

PDA Set-Up

11

Strain & Acceleration Measurements


Strain Transducers measure force


Two Strain Transducers **Required** to Reduce Bending Effects.

Accelerometers measure velocity

Two Accelerometers Used for Redundancy

PDA Gage Attachment

15

PDA Gage Attachment

Hammer Placement

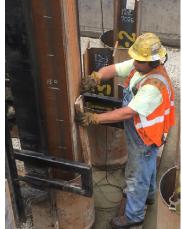
17

Test Pile Special Length

- 10 ft longer than production
 - Allows room for PDA equipment
 - Able to drive deeper if necessary
 - Additional length has a mild effect the ENR calculation

PDA Testing Process

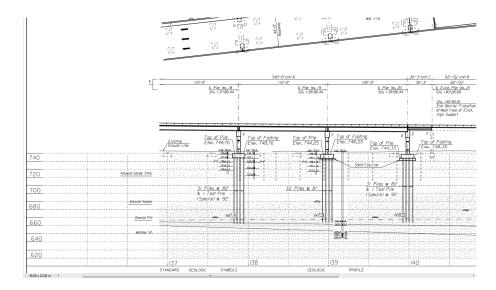
- Foreman marks the pile every 5 or 10 blows until end of drive
 - Usually beginning at a depth slightly above bedrock
- The last 20 blows from the initial drive is used for:
 - PDA Analysis
 - ENR Calculation



19

PDA Restrikes

- Standard PDA series of restrikes (15 min, 1 hour, 4 hour, 24 hour)
- Foreman marks every 5 blows
- First 5 blows are the most important!


Projects with PDA

- Lewis and Clark Viaduct Pier 18
 - 1 Test Pile Special
 - Results will be applied to 2 pier (Pier 18 and Pier 17)
 - Pile Design Load = 110 tons
 - PDA Target Load (110/.65) = 169 tons (338 kips)
 - Plan length 82 ft
 - 12 x 74 H-Pile
 - Pileco D30-32

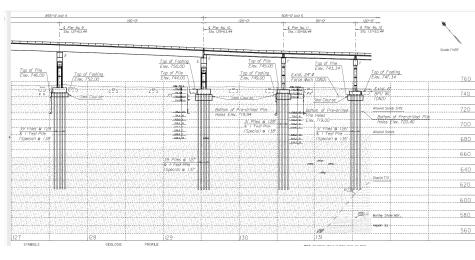
21

Lewis and Clark Viaduct, Pier 18

Lewis and Clark, Pier 18

- End of drive Stop 5 feet above plan tip
 - PDA recording **243.5** tons (we needed **169** tons)
 - Bearing Formula recording 80 tons (needed 110 tons)
 - 80 tons is the new target.
- Good example of typical PDA Test
 - The target load is recognized by the PDA first.
 - · New target Bearing Formula Load is less than plan.
- Important to understand
 - We are **NOT** changing the design load of the pile.
 - 80 tons (from the bearing formula) = 243.5 tons (from the PDA)

23


Lewis and Clark Viaduct

- Pier 11
 - 1 Test Pile Special
 - Results will be applied to Pier 11 only
 - Pile Design Load = 120 tons
 - PDA Target Load = 184.6 tons (369 kips)
 - Plan Length 128 ft
 - 12 x 74 H-Pile
 - Pileco D36-32

Lewis and ClarkViaduct, Pier 11

25

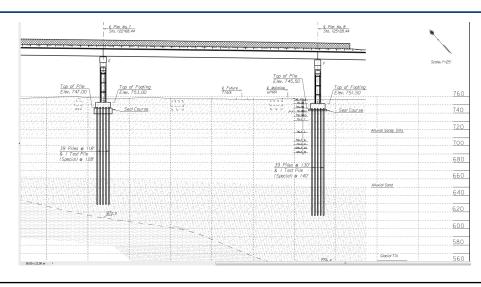
Lewis and Clark, Pier 11

- End of drive Stopped at plan tip
 - PDA recording 131 tons (we needed 185 tons)
 - Bearing Formula recording **45.2** tons (needed **120** tons)
- 15 minute restrike
 - PDA recording 170 tons
 - Bearing Formula recording 65.9 tons
- 1 hour restrike
 - PDA recording 193 tons
 - Bearing Formula recording 79.6 tons

Lewis and Clark, Pier 11

- Results
 - Sufficient capacity achieved after 1 hour.
 - Strictly using the ENR Bearing Formula, driving would have continued well past plan tip elevation.
 - New target Bearing Formula Load is less than plan.
- Important to understand following a PDA with restrikes
 - Follow the initial driving criteria (movement and stroke)
 - 45 tons will be the new target.
 - If capacity is questionable after initial, conduct a 24 hour restrike.
 - Use the ENR values from the PDA restrikes to guide you.

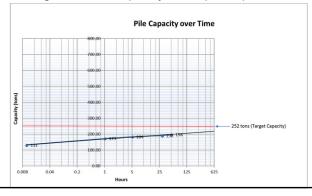
27


Lewis and Clark Viaduct

- Pier 8
 - 1 Test Pile Special
 - Results will be applied to Pier 8 only
 - Pile Design Load = 164 tons
 - PDA Target Load 164/.65 = 252 tons (504 kips)
 - Plan Length 130 ft.
 - 12 x 74 H-Pile
 - Pileco D36-32

Lewis and Clark Viaduct, Pier 8

29


Lewis and Clark, Pier 8

- End of drive Stopped at plan tip
 - PDA recording 131 tons (we needed 252 tons)
 - Bearing Formula recording 43 tons (needed 165 tons)
- 1 hour restrike
 - PDA recording 173 tons
 - · Bearing Formula recording 55.1 tons
- 5 hour restrike
 - PDA recording 184 tons
 - Bearing Formula recording **71** tons
- 29 hour restrike
 - PDA recording 190 tons
 - Bearing Formula recording 85 tons

Lewis and Clark, Pier 8

- 50 hour restrike
 - PDA recording 198 tons (we needed 252 tons)
 - Bearing Formula recording 113 tons (needed 164 tons)
- Summary up to this point
 - · 26 days, and still not achieving sufficient capacity near plan tip
 - · Within a 2 days
 - · Keep driving

31

Lewis and Clark, Pier 8

- End of drive # 2
 - Spliced on an additional 25 ft.
 - · Drove pile until the PDA started showing capacity was being gained
 - Ended up drove an additional 21.5 ft.
 - Decided to let it set over the weekend, would restrike on Monday
 - PDA recording 207 tons (needed 252 tons)
 - Bearing Formula recording **100** tons (needed **165** tons)
- 66 hour restrike
 - PDA recording 306 tons
 - Bearing Formula recording 167.6 tons

Why use the PDA?

33

Why Use the PDA

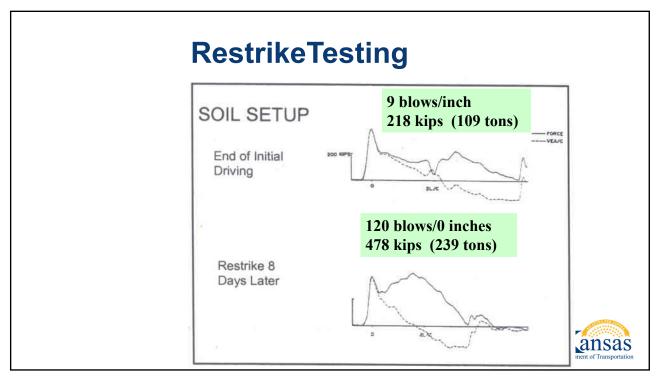
- PDA and Restrike Testing Better Quantifies Bearing Capacity
- PDA Monitors (Bearing Formula cannot do these)
 - Driving Stresses
 - Checks Hammer Performance
 - Evaluates Soil Performance
 - Checks Pile Integrity (will see damage)
 - Can discount capacity in potential scour areas
- In Most Cases by Utilizing the PDA and/or Restrike Testing a Savings Resulting From Fewer Splices or Shorter Pile Lengths

Why Use the PDA

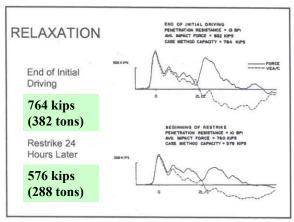
- Elimination of overdriving the pile
- PDA monitors driving stresses
 - May allow piles to be driven harder to reach a minimum pile tip elevation
 - Using bearing formula, driving must stop once 110% of pile driving load is achieved because stresses are not known using the formula
 - Hopefully well before as to not damage the pile, especially in end bearing situations

35

Restrike Testing



RestrikeTesting


- Long term pile capacity
- Estimating static pile capacity using dynamic method calculations
- Accounts for possible changes in soil conditions
- Restrike testing can record these capacity changes over time
- Only true way to evaluate the pile performance over time

37

Soil Relaxation

- Piles driven into weathered shale
- Displacement piles driven into dense saturated silts or fine sands due to a negative pore pressure effect at the pile toe

Note:

Bearing capacity loss at toe Some capacity gain on shaft

39

PDA Restrike Testing Procedure

- No driving activity near test site for at least 24 hours prior to testing
- Conduct the restrike a minimum of 24 hours later, unless otherwise specified
- Warm-up hammer—operating correctly
- Hammer should be warmed up at a location as far from the test pile as possible
- Restrike pile for 20 blows or a movement of 4 inches whichever comes first

PDA Restrike Testing Procedure

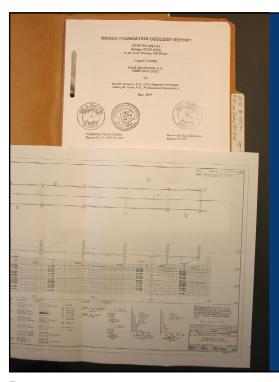
- · Record the first blows
- Mark every 5 blows
 - Can compare the first blows of the restrike to the last blows of the restrike.
 - In most cases by doing a restrike you will see an increase in bearing capacity due to soil setup.
 - If pile is mobilized, you should see a difference between beginning and end of restrike in bearing capacity and in set per blow

41

PDA Restrike Testing Procedure 25 inch/blow 25 blows (112 tons) 20 blows 15 blows 10 blows 5 blows (146 tons) 0 inch/blow

PDA Restrike Testing

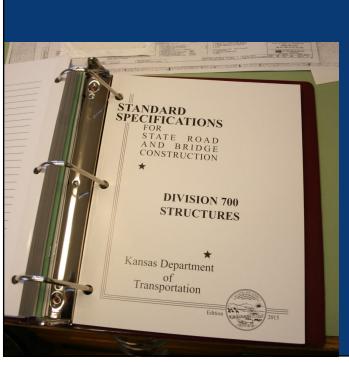
1 Study the Plans


3

Study the Plans

For piling, see the "General Notes and Quantities" page

and the "Engineering Geology" page



2 Read the Bridge Foundation Geology Report

5

#3

Read Section 704
of the
Standard
Specifications
and check for new
Special Provisions

4 Get all the hammer info from the Contractor

To use the driving equation, you need:

Weight of the hammer piston (ram)

Weight of the pile cap (helmet) and the anvil

7

To check the hammer size, you also need:

Maximum stroke of piston

PILE AND DRIVING EQUIPMENT DATA [Test Pile (Special), Section 704, Standard Specifications] Contract No. _____ Structure Name/No. ____ Pile Driven By (Contr. or Subcontr.) This is Form Manufacturer _____ Type _____ Serial No. ____ 217 AA, in Rated Energy $\frac{\theta}{(\text{ft-lb/J})}$ Length of Stroke Modifications the Forms Warehouse CAPBLOCK: Thickness _____(in\mm) Area ____(in^2\mm^2) Modulus of Elasticity - E ____ Coefficient of Restitution - e ____ PILE CAP: Helmet Weight _____ CUSHION: _ Area____(in²\mm²) Modulus of Elasticity - E _____(psi\MPa) Coefficient of Restitution - e ____

NOTICE TO CONTRACTORS PILE AND DRIVING EQUIPMENT DATA
[Test Pile (Special), Section 704, Standard Specifications] Project No. _____ County _____
Contract No. ____ Structure Name/No. ____ Pile Driven By (Contr. or Subcontr.) Here is the HAMMER: Rated Energy $\frac{e}{(ft-lb)^3}$ Length of Stroke Modifications hammer's maximum stroke and CAPBLOCK: Thickness _____(in\mm) Area _____(in^2\mm^2) weight of the Modulus of Elasticity - E _____(psi\MPa) pile cap. PILE CAP: Weight ____ _(lb\kg) CUSHION: Modulus of Elasticity - E _____(psi\MPa) Coefficient of Restitution - e __

	NOTICE TO CONTRACTORS PILE AND DRIVING EQUIPMENT DATA [Test Pile (Special), Section 704, Standard Specifications] Project No County Contract No Structure Name/No Pile Driven By (Contr. or Subcontr.)
Notice that the anvil weight is not here.	HAMMER: Manufacturer
	PILE CAP: Helmet Bonnet Anvil Block Drivehead CUSHION: Material Modulus of Elasticity - E (psi\MPa) Coefficient of Restitution - e

Most of the time, a contractor will send you their company's form and not KDOT's

Anvil: 749 lbs

Striker plate: 628 lbs
Helmet: 1076 lbs
Adapter: 948 lbs

Add the weight of the pile, and you have "X" for the equation.

#5 Make sure that the energy rating of the hammer is high enough to drive the piles

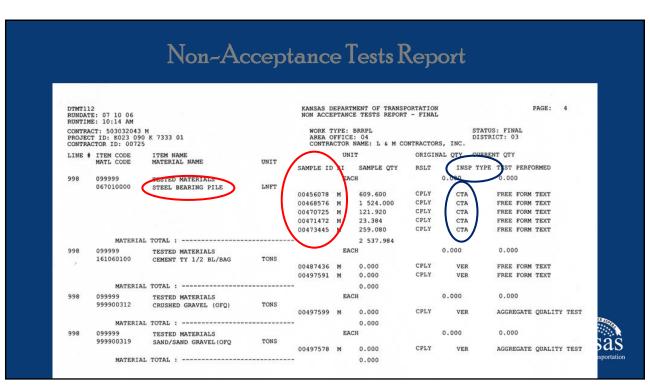
Use the driving equation with 0.1 inch per blow and the maximum stroke for that hammer. Refer to the *Bearing Formula* presentation.

15

Forward the hammer info to Geology when you get it if:

There is a test pile (special)

You would like one of us on site during the start of driving


6 Get the Type-A Certificate from CMS

Go To "Materials"

...then "Materials Report"

...then "Contract Finals"

Run Date: 07 10 06 Maintain Sample ID Record
Run Time: 10:03 AM PAGE - 1 Sample Id: 00473445 SI: M Inspector Id: 000905012 KELLY MARSHALL Resp Loc: MR Total Samples: 1 Type Insp: CTA Date Sampled: 09 29 03 Related Sample Id: Type Test: 900 FREE FORM TEXT Proj Id: K023 090 K 7333 01 Contract #: 503032043 M Line #: 998 Quantity: 259.080 Producer: 00035001 Name: NUCOR-YAMATO STEEL Loc: BLYTHEVILLE St: AR Legal Desc: Mix Plant: Name:
Matrl Cd: 067010000 STEEL BEARING PILE Desc: A03-5201 Mix Plant: Unit: m Qty Represented: 259.080 Nbr of Items: 0 Qty Assigned: 0.000 Sampled From: PRODUCTION
Lab: SER Name: SERVICE Ledge: Lot/Heat Nbr: Dates::Shipped: 10 01 03 Received: 10 01 03 Test Start: 10 01 03 Est Compl: Act Compl: 10 02 03 Test Result: CPLY Authorized By: NAT VELASQUEZ BY KDM Remarks: 1600-11 FINAL DISPOSITION SUBJECT TO CONDITION OF MATERIAL WHEN USED AT PROJECT HEAT (Q NM), 218107 (60.96), 218103 (91.44) 219625 (106.68)

There is no prequalified list for piling

All piling must go thru testing

#7 Make Your Driving Equation Spreadsheet

It's Form 217b in Forms Warehouse

Delmag McKierman Terry (Diesel Hammer)															
Sur	nmary		Formula				Entry Data								
Hammer Wt.	3528	lbs					Weigh	nt per fo	ot			N	/laximu	n	
Cap/Anvil Wt.	2403	lbs	_	1.6	W·F	I	of pilir	ng (Ibs/i	ft):	53 lbs		Ha	mmer D	rop	
Pile Type	HP12x53		P =		(X*	+)	Length	of Pile:		43 fee			11	ft.	
Min. Res.		tons		S + 0.1	. M	-1		X:		682 lbs			/linimu		
Max. Res.	66	tons			("	/	Minim				hes/blo		mmer D		
							Maxim	um "S":	0.	300 [°] inc	hes/blo	w	6	ft.	
Field Blow cou	_														
Penetration pe		blows (in	_	2.000	2.400	2.800		3.600	4.000	4.400	4.800	5.200	5.600	6.000	ı
Average Penetr	ation per	blow (in.)	"S"	0.100	0.120	0.140	0.160	0.180	0.200	0.220	0.240	0.260	0.280	0.300	
Drop of Hai		Computed Resistance (tons)													
	ř.	6.0	П	73	67	62	58	54	51	48	45	43	41	39	
	feet.		ш	79	73	67	63	59	55	52	49	47	44	42	
Calculated Be	-		ш	85	78	72	67	63	59	56	53	50	48	46	
is HIGH		7.5	\perp	91	84	78	72	68	64	60	57	54	51	49	ı.
		0.0	+	97	89	83	77	72	68	64	61	57	55	52	i i
Calculated Be		8.5 9.0	+	103 109	95 101	88	82 87	77	72	68	64 68	61 65	58 62	55 59	
is GOOD	£		+	115	101	93 98	92	81 86	76 81	72 76	72	68	65	62	
Calculated Be			+	121	112	103	96	90	85	80	76	72	68	65	-
is LOW			+	127	117	103	101	95	89	84	80	75	72	68	
IS LOW	a a a	11.0	+	133	123	114	106	99	93	88	83	79	75	72	
		11.0	_	100	120		000								
↔ 6.0	8 2	2.991	ĸ		2.477	-> 8.	000		–Min.∣	Bearing					
6.5	blows ce (in.)	3.461	000		2.905	-> 7.	000 - ₹		–Max.	Bearing	. —			_	
.⊆ 7.0	8 5	3.931	netration required per 20 blows to reach Maximum Resistance		3.333	-> 6.	000 - 000 setration (inches)	§				_		[
7.5	Sist	4.402	Per Ser		3.760	-> 5.	∞ ↓ 늘	plows				1		— I	
8.0	8 g	4.872		4	4.188	-> 4.	000 누월				^				
8.5	required rim um Re	5.343	Penetration required to reach Maximum	. 4	4.616	-> 3.	600 부	- D			1				STEATER
9.0	ē .Ē	5.813	2 E	1	5.043	-> 2.	000 누호			- 1					TZ
9.5	netration reach Mir	6.283	ğ -		5.471	-> 1.	000								Kansas
10.0	reach	6.754 7.224	etra E		5.899 5.326	-> 0.	000						-		Discontinuous of Transportation
9.0 9.5 10.0 10.5 11.0		7.695	F 5		5.754	->	0.0	2.0	4.8	rop of H	ammer (f	80	10.0	12.0	Department of Transportation
_ 11.0		7.055	f		J. 1 J. T										

Penetration per	2	0	blows (in.)		2.000	2.400	2.800	3.200	3.600	4.000	4.400	4.800	5.200	5.600	6.000
Average Penetration per blow (in.) "S"					0.100	0.120	0.140	0.160	0.180	0.200	0.220	0.240	0.260	0.280	0.300
Drop of Hammer (Stroke) (ft.)					Computed Resistance (tons)										
		et.	6.0		73	67	62	58	54	51	48	45	43	41	39
		of Hammer "H" in fe	6.5		79	73	67	63	59	55	52	49	47	44	42
Calculated Bearin	ng		7.0		85	78	72	67	63	59	56	53	50	48	46
is HIGH			7.5		91	84	78	72	68	64	60	57	54	51	49
			8.0		97	89	83	77	72	68	64	61	57	55	52
Calculated Bearin	ng		8.5		103	95	88	82	77	72	68	64	61	58	55
is GOOD			9.0		109	101	93	87	81	76	72	68	65	62	59
			9.5		115	106	98	92	86	81	76	72	68	65	62
Calculated Bearin	ng		10.0		121	112	103	96	90	85	80	76	72	68	65
is LOW		9	10.5		127	117	109	101	95	89	84	80	75	72	68
		۵	11.0		133	123	114	106	99	93	88	83	79	75	72

Do a Sample Calculation

Find the appropriate equation such as:

$$P = 1.6 W H$$

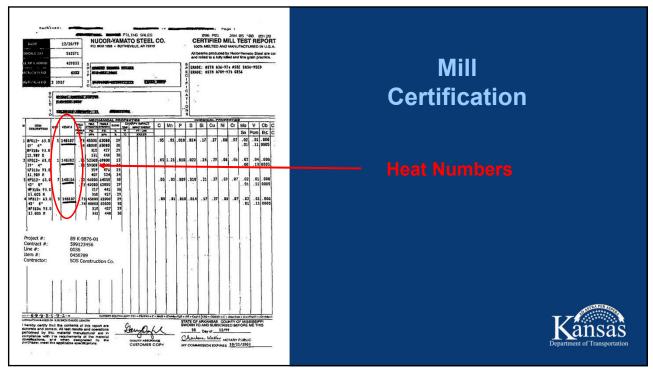
S + 0.1 (X / W)

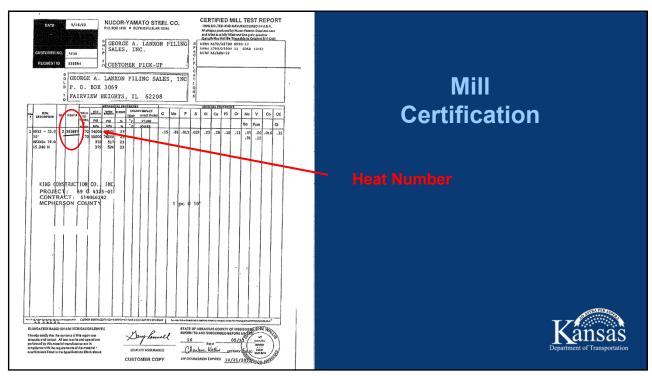
Do a calculation by hand to get comfortable with the different variables and how they change things

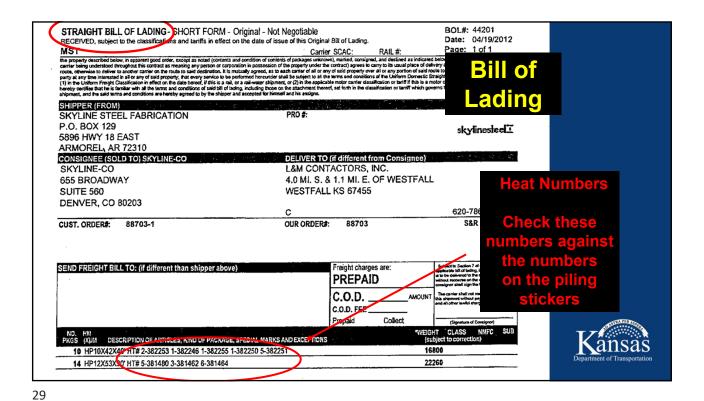
#8 Check Minimum Pile Length

Talk to someone in your office about what to do if you achieve the required resistance before plan length is reached.

It will probably be OK, but there may be concerns about scour and minimum pile length

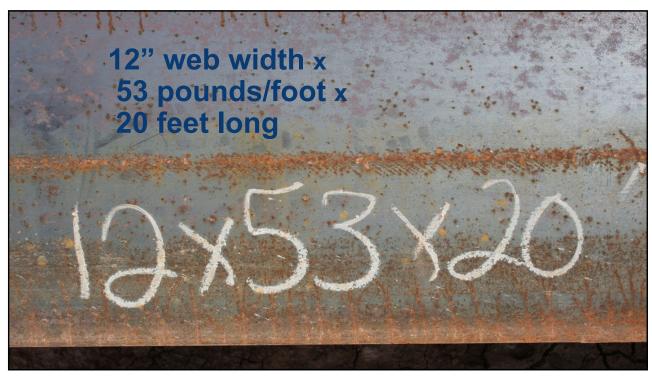



25


#9 Check the Piling Itself

Check that the heat numbers on the certification or bill of lading matches the numbers on the piling

Sticker on Pile 1


33

Sticker on Pile 2

All H-pile now used in KDOT bridges is Grade 50

Check the Piling Itself

Inspect the piles for damage that might have occurred during shipment, or defects that were overlooked earlier

Pipe piles can get bent; concrete piles can get broken

H-piles can have bent flanges

10 Measure and Mark the Piling

37

10

Measure and Mark the Piling

11 Make Sure the Contractor Brought the Hammer He Told Us He Was Bringing

39

12 Check the Hammer Cushion

Check the Hammer Cushion

Cushion must be made of a material approved to use on KDOT projects

What else?

41

Cushion must be made of a material approved to use on KDOT projects

Must be intact and at least 75% of its original thickness

Check the Hammer Cushion 1

Original thickness of cushion should be listed on the hammer data sheet

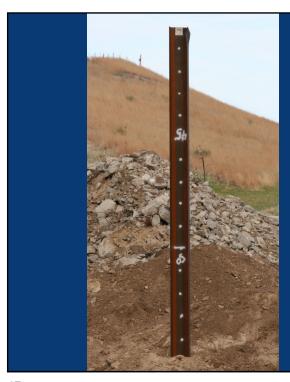
Ask contractor when cushion was last changed

Check to see if it looks OK

Pry it out of helmet if you think you need to measure its thickness

43

13 Line up some help from the office



13 Line up some help from the office 1

45

14 Help the Contractor Verify that Piles are in the Correct Location DOH!

Make sure.....

Oh, never mind.

47

15 Make Sure the Piles are Plumb

16 Keep track of where your pile tip is.

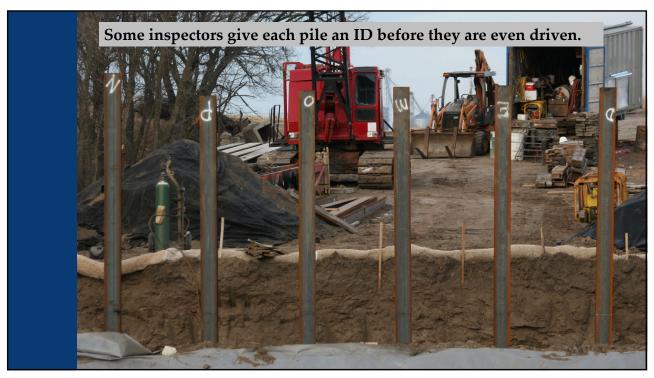
Know the depth you should hit bedrock.

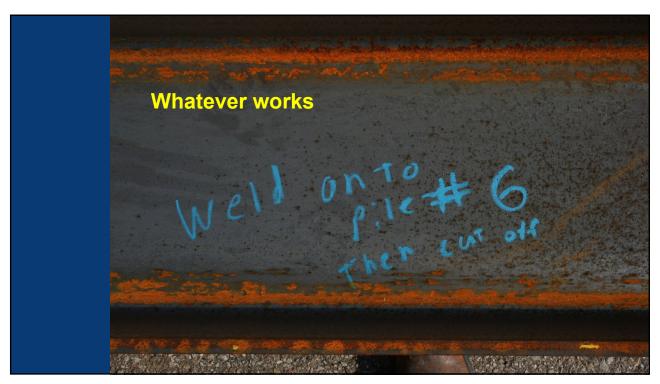
49

17 Drive Pile to Plan Length or Required Resistance

If you drive to the required resistance before plan length is reached, check with Area Office for scour concerns or minimum pile length

If plan length is reached before the required resistance, call Area Office about a possible restrike

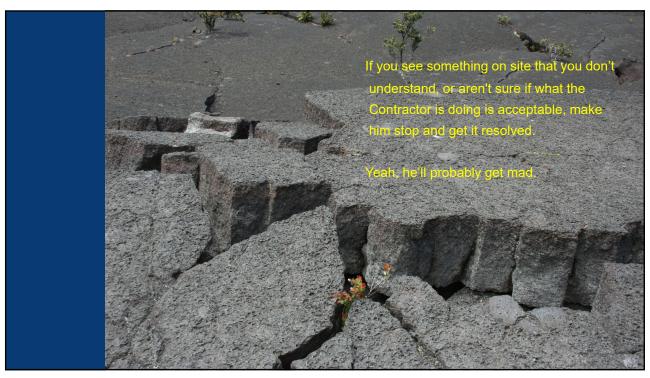

18 Mark the Cut-off on the Pile


Help Contractor mark plan cut-off elevation on the pile after driving.

Mark the piece that was cut off, so that you know where it came from. You may need to use it to splice later.

19 Have Someone Check Your Calculations

Before the contractor places any concrete around the piling, have a second person go over your resistance calculations.



57

19 Have
Someone Check
Your
Calculations

You Aren't Alone!

If you have a question and can't reach your bosses, there are other people in KDOT who will help you:

your Regional Geologist

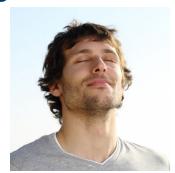
the Bridge Designer in Topeka
(Bureau of Structures and Geotech Services)

your District Construction Engineer

If a problem occurs, what do you do?

STOP DRIVING AND EVALUATE THE SITUATION

3

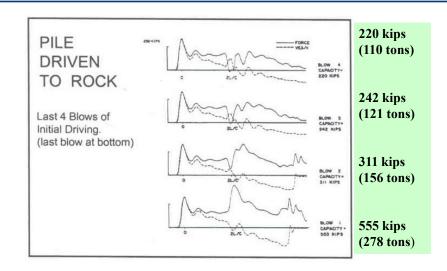

Some Problem Scenarios

- Overdriving encountering hard rock
- Target bearing not achieved
- Misalignment of hammer
- Hammer performance

- Take time to problem solve
 - What is happening
 - Check calculations
 - Check any level runs
 - Check the hammer
 - Check alignment; pile and hammer
 - Check length of pile
 - Review the Geology Bridge Sheet

Problem Solving Continued

- Are you using the correct formula?
- Correct hammer specifications input?
- Using the Pile Driving Formula load?
- Wrong size pile?
- Wrong length pile?


Solution Found!!

- Can you make the decision to correct it?
- Contact
 - Your Boss
 - Construction Engineer
 - Design Engineer
- Adjust and proceed with driving.
- Always document.

7

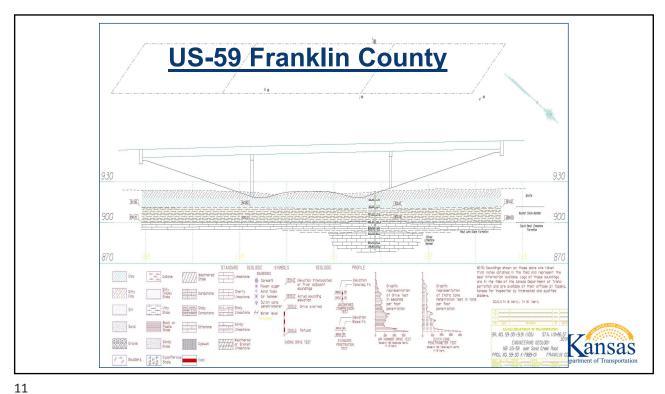
Driving to Hard Bedrock

Driving into hard bedrock

- Project north of Syracuse, KS
- Damaged H-pile
- The lower 7 feet of Pile #5 at Pier 1.
- Understand the geology!

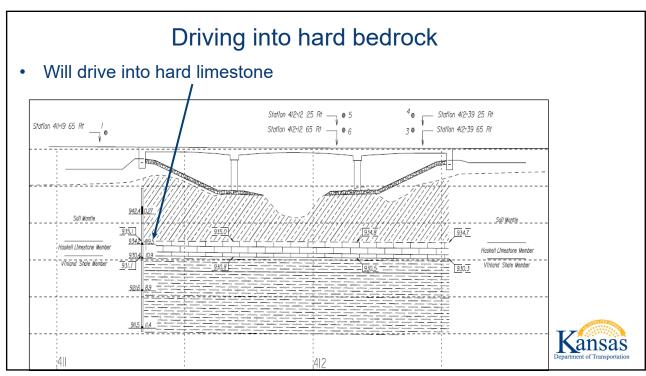
C

Driving into hard bedrock



- Same project
- Bottom 2.5 feet rolled, Pile #6, Pier 4

Top of pile damaged too



Driving into hard bedrock

Pile Alignment

Inspect the pictureWhich pile would concern you?

15

Pile Alignment

Inspect the picture
If you chose the 4th from the front, good job!

Pile Alignment

17

Pile Damage

- Damage to bottom of H-pile
- Probably weren't getting bearing
- Led to inspect for damage

Pile Damage

Kansas
Department of Transportation

Pile Alignment

Inspect the picture

- Which piling would concern you?
- Maybe this one is a little easier to, see?

21

Pile Extraction

Pile Damage

23

Pile Damage

Pile Damage

Pile Damage

27

Hammer Alignment

- Can reduce the transferred energy.
- Can damage pile top
- Can give false blow count
- Pipe pile vulnerable

Pipe Pile Damage

Mushrooming Caused by:

- Misalignment
- Hard driving
- Both?

Could Result in:

- Reduction of transferred energy
- Exaggerated blow count
- Exaggerated bearing capacity

29

Pile Damage Suspected

- Is the damage bad enough to be of concern?
- Is the damage far enough down that the remaining good pile will carry the load?
- Can the pile be pulled and a new one driven?
- Do more piles need to be added to compensate for the damaged pile?

Minor Damage to Top of Pile

- Target bearing not achieved and above plan tip
 - Stop Driving and cut off the damaged portion of the pile.
 - Check alignment of the hammer on the pile
 - · Resume driving.
- Target bearing and minimum plan tip achieved.
 - Stop and cut pile off at cut off elevation
- If a restrike test is to be conducted on this pile, the top should be undamaged.

31

Pile Damage Suspected

- Contact the Engineer
- Contact the Geology Section to conduct PDA.

Trouble Achieving Target Bearing

- Check all calculations
- Check input parameters for bearing formula
- Check hammer
- Contact Engineer or supervisor
- Can a restrike test be conducted to evaluate soil set up?
 - If so, restrike pile in at least 24 hours
- May have to splice on more pile and continue the drive

33

Target Bearing Achieved Early

- Check all calculations
- Check input parameters
- Check pile length
- Contact Engineer or supervisor

Target Bearing Achieved Early

- If pile tip is close to plan tip elevation and 110% of the Pile Driving Formula Load has not been reached, the pile can be driven to 110% (if plan tip must be achieved)
- Is pile hitting an obstruction? (boulder, hard layer, old footing, another pile)
 - If so, what concerns will it cause.
- Is there enough pile length in place below cut off to satisfy lateral load and scour requirements and, if required, uplift requirements
 - If so pile can be cut off (always consult the Engineer)

35

Hammer Performance

• If the hammer is not performing properly the bearing capacity

can not be computed accurately

- Improperly functioning hammer:
 - May exaggerate the blow count
 - May give false set per blow information
 - May reduce pile driving ability
 - May simulate hard driving and high capacity in low-capacity conditions

Hammer Performance

- Preignition in diesel hammer
 - · Fuel starts to combust or fully combust before impact
 - Reduces ram impact velocity
 - Cushions the impact
 - Reduces transfer of energy to the pile, energy returned to the ram causing a high but false stroke
 - Low energy transfer results in high blow counts
- Can simulate hard driving and high-capacity condition at a potentially low soil resistance

37

Hammer Performance

- Some things to look for
 - If you are getting a low set per blow yet a very small stroke, could be problems with hammer.
 - A low set per blow should indicate hard driving and you should have a large stroke.
 - Different looking exhaust
 - Fuel could be contaminated (water in fuel)
 - · May not get the best fire on each stroke
 - Maybe the hammer just sounds much different than on the previous drive
 - · Question the contractor if you feel something is wrong or different

Preignition in Diesel Hammer

- Preignition in diesel hammer
 - Caused by overheated hammers
 - · Lubrication oils start to burn
 - · Fuel vaporizes prematurely due to excess heat
- Signs of Preignition
 - · Black smoke while stroke is high
 - Flames in exhaust ports
 - Blistering paint
 - Oils and grease on outside smoking or burning
 - · No obvious metal to metal impact ringing sound

39

Preignition in Diesel Hammer

- If preignition is suspected:
 - Stop driving and let hammer cool down for at least 1 hour
 - Recommend the hammer be lubricated to replace any burnt off lubrication
 - Resume driving and monitor stroke and blow count
 - If stroke and blow counts are lower in the first few minutes of driving, preignition was probably occurring

Hammer Performance

- · Some performance problems and what to look for
 - · May be hard to recognize but should be familiar with
- Water or dirt in fuel
 - · White exhaust smoke and hollow sounding impacts
- Clogged fuel line (lack of fuel)
 - · Little or no exhaust smoke
 - Low strokes
- Malfunctioning fuel pump or fuel injector
 - · Inconsistent ram stroke and gray or black exhaust smoke

41

Hammer Performance

- · Low lubricating oil or malfunctioning oil pump
 - · Lower than normal blows per minute
 - · Reduced stroke
 - A quick check
 - see if ram is wet and shiny during drive when upper ram is visible
- Poor Compression-Worn piston or impact block rings
 - · Short strokes even in hard driving
 - Easily checked by way of a "cold blow"

Hammer Performance

- "Cold Blow" Procedure
 - Ram is picked up as if to start the hammer but the fuel line rope is kept stretched such that no fuel is pumped.
 - The ram is released and after impact the ram should bounce on the air trapped in the chamber. Each bounce can be heard.
 - Should get 5 to 10 good bounces.

43

Be Aware!

Crane tipping while lowering the leads and hammer

Had to let the leads free fall to keep from tipping over

Who to Contact

With all problems you should contact Your supervisor Engineer in charge

Design Engineer

If needed you can contact the Geology Section for guidance or to have the PDA brought out

Neil Croxton, Salina Regional Geologist 785-640-2613 Jason Kolb, El Dorado Regional Geologist 316-251-6596 Denny Martin, Chanute Regional Geologist 620-902-6428 John Barker, Topeka Regional Geologist 785-291-3861

45

Questions!

1

Where do you find pile information?

KDOT Standard Specifications Book 2015 Edition

Division 700—Structures

Section 704 Piling

pages 700-15 to 700-21

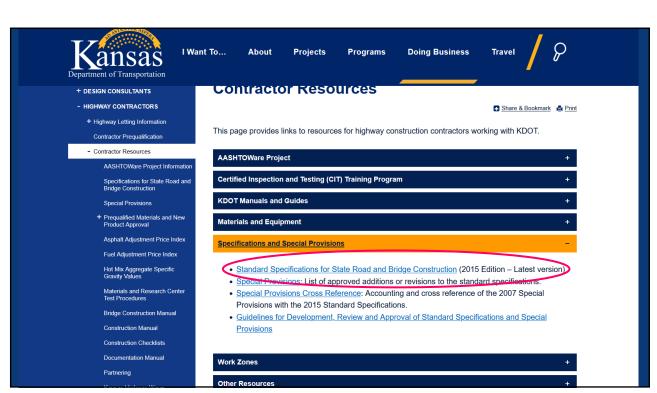
Where do you find pile information? 1

KDOT Standard Specifications Book

2015 Edition

Division 1600—Ferrous and Non-Ferrous Metals

Section 1609 Steel Piling and Pile Points
page 1600-18

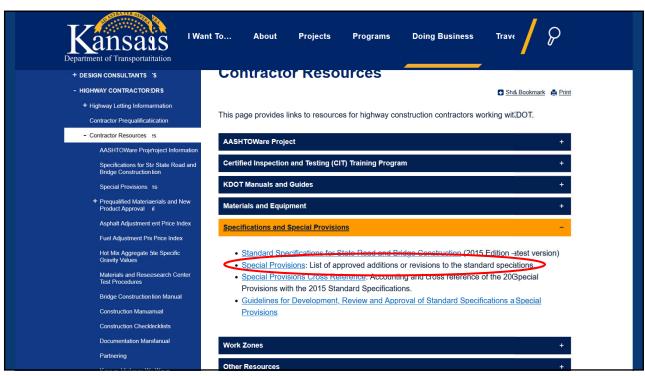

2

How to get to the 2015 Edition

Go to www.ksdot.gov

Hover over "Doing Business", then go to "Contractor Resources", "Specifications and Special Provisions", and "Standard Specifications for State Road and Bridge Construction"

2015 Special Provisions


Below the 2015 Specifications is the link to Special Provisions.

There is currently one piling Special Provision.

That will change, so always check for more.

7

2015 Special Provisions 1

15-07017

Adds a line about sheet pile to the bid items

We don't worry about sheet pile in this class

9

The Bridge Construction Manual

Chapter 5.3 Driven Pile

Contains some practical information about bridge piling construction and inspection.

The Bridge Construction Manual

Chapter 5.3 Driven Pile

General terminology and definitions, pile and hammer types, and the mechanics of pile driving, including formula examples

11

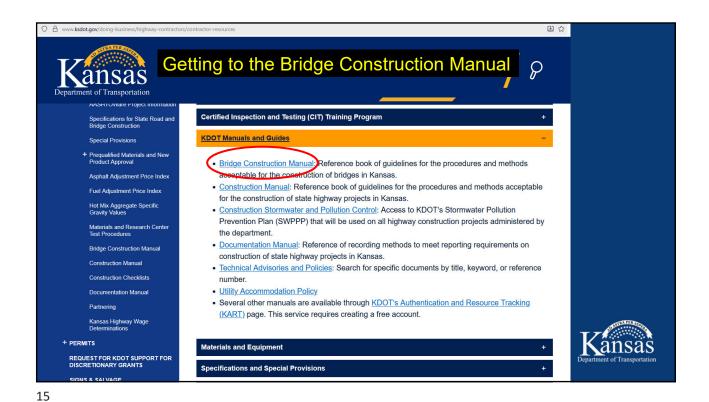
The Bridge Construction Manual

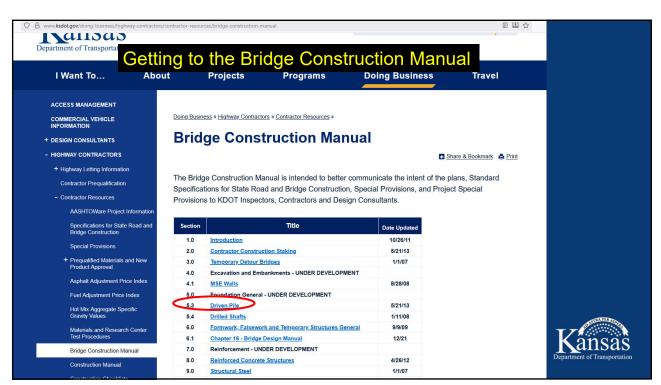
Chapter 5.3 Driven Pile

We cover all this material in class.

To get to this Manual online

www.ksdot.gov


Hover over "Doing Business"


Go to "Highway Contractors", then "Contractor Resources", "KDOT Manuals and Guides", "Bridge Construction Manual", and Section 5.3 "Driven Piles"

13

(a) General

Size needed to develop the energy necessary to drive piles at least 0.1" per blow at the required resistance on the plans (the Pile Drive Formula Load)

17

Division 700—Structures Section 704.3 Pile Driving Equipment 1

(a) General

(1) Open-end Diesel Hammer

Equip with a device extending above ram cylinder to permit visually determining hammer stroke at all times.

(a) General

(3) Weight of the striking part of air hammers used shall be a minimum of ⅓ the weight of the pile and drive cap

Minimum weight of striking part is 2,750 pounds

19

Division 700—Structures Section 704.3 Pile Driving Equipment 3

b. Hammers for Steel Piles, Steel Sheet Piles and Shells for Cast-in-Place Concrete Piles.

Gravity hammer—minimum weight 3500 pounds

Gravity hammer—maximum drop 12 feet

b. Hammers for Steel Piles, Steel Sheet Piles and Shells for Cast-in-Place **Concrete Piles.**

> Diesel or air—maximum fall 90% of the maximum fall recommended by manufacturer

Minimum 6000 foot-pounds energy per blow

21

c. Hammers for prestressed concrete pile

Only driven with diesel or air hammer unless otherwise noted

Hammer must develop 1 foot-pound of energy for each pound of weight driven

Minimum energy of hammer is 6,000 footpounds per blow

23

Division 700—Structures Section 704.3 Pile Driving Equipment 6

d. Vibratory hammers

Used only when specified in Contract document

If used, 1 of 10 piles must be load tested using an impact hammer (diesel or air) with suitable energy

e. Additional Equipment

The plant and equipment provided for air hammers shall have capacity to maintain the pressure at the hammer specified by the manufacturer.

25

Division 700—Structures Section 704.3 Pile Driving Equipment 8

e. Additional Equipment

If Contractor cannot drive pile to the required penetration and/or bearing capacity, he must bring a bigger hammer. If the Engineer approves, he may resort to jetting or pre-drilling at his own expense.

e. Additional Equipment

Use of the pile driving analyzer may be required when minimum requirements are not met

27

Division 700—Structures Section 704.3 Pile Driving Equipment 10

f. Leads

Constructed to allow freedom of movement of the hammer

Except where piles are driven through water, the leads shall be long enough so that followers are not needed

Remember what a follower is ?

If you search for a picture of a "follower" on the interwebs, this is one of the things that shows up.

The interwebs are great, eh?

29

f. Leads

Long enough to permit them to be spiked into the ground before driving starts

31

Division 700—Structures Section 704.3 Pile Driving Equipment 12

g. Hammer Cushion

Required on all impact pile driving hammers except gravity hammers

Inspect before driving at each bridge or after driving for 100 hours

Replace cushion when thickness is reduced by 25% or it appears to be deteriorating.

g. Hammer Cushion

A striking plate is placed on the cushion to insure uniform compression of the cushion material

33

Division 700—Structures Section 704.3 Pile Driving Equipment 14

g. Hammer Cushion

Made of "durable manufactured material"

Micarta (Conbest)—fabric and phenol

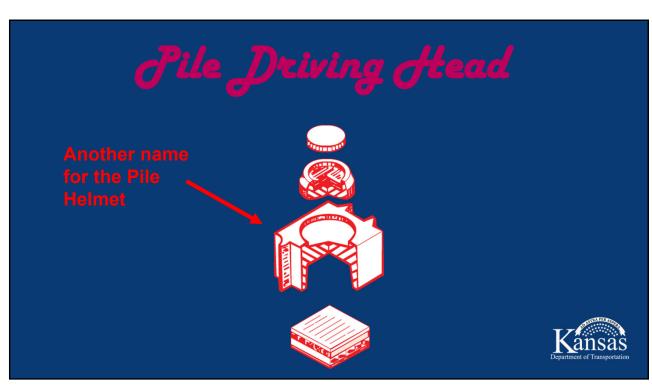
Nylon—2" blocks

Hamortex- metallized paper reels

Force 10, Forbon, Fosterlon

Aluminum

(h) Pile Driving Head


Use driving head adequate for distributing the hammer blow to the pile

Guided by the leads and not free-swinging

Should fit the pile head adequately

35

i. Water Jets

Only used with permission from the Engineer If used:

Number of jets and volume and pressure of water sufficient to erode material

Power enough to deliver at least 100 psi pressure from 3/4" jet nozzles

37

Division 700—Structures Section 704.3 Pile Driving Equipment 17

i. Water Jets

Jets shall be withdrawn at least 5 feet from the desired final penetration depth and the pile driven the last 5 feet with an approved hammer

a. Order Lists, Piles, and TestPiles

Order list is the same as the estimated quantity (number and length of piles) shown in the Contract Documents.

39

Section 704.4 Construction Requirements 1

a. Order Lists, Piles, and Test Piles

For piles and test piles, submit the completed "Pile and Driving Equipment Data" sheet a minimum of 3 weeks before the scheduled date of driving piling. The Engineer (that's you) will forward this information for a Test Pile (Special) to the Chief Geologist.

a. Order Lists, Piles, and Test Piles

When Engineer requires a restrike, follow subsection 704.4e. for restrike procedures

41

Section 704.4 Construction Requirements 3

a. Order Lists, Piles, and Test Piles

Drive test piles at specified locations

Engineer will use test pile information to determine pile tip elevation

a. Order Lists, Piles, and TestPiles

If multiple hammers are used on a project with test piles, drive a test pile with each hammer

43

Section 704.4 Construction Requirements 5

b. Test Pile (Special)

Pile Driving Analyzer used to monitor test pile

b. Test Pile (Special)

Notify Engineer (John) minimum 5 working days prior to test.

Allow 1½ hours for pile to be prepared for test

Allow safe and reasonable access to pile

a personnel lift is very handy for this, if the contractor has one

The Engineer will use the PDA results to provide the Contractor with a blow count for production driving.

45

Section 704.4 Construction Requirements 7

c. Driving piles

Piles can be driven with a gravity, diesel or air hammer

or

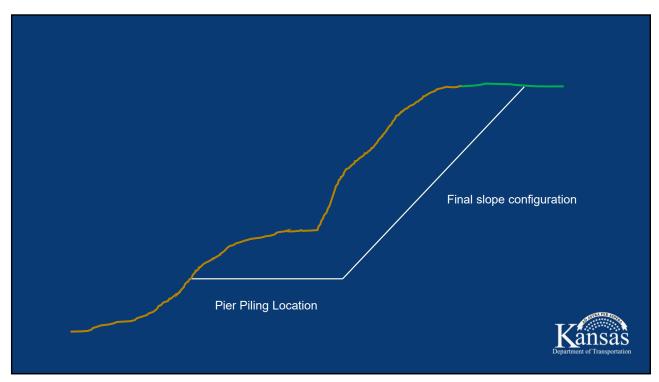
Combination of pre-drilled holes or water jetting and a hammer

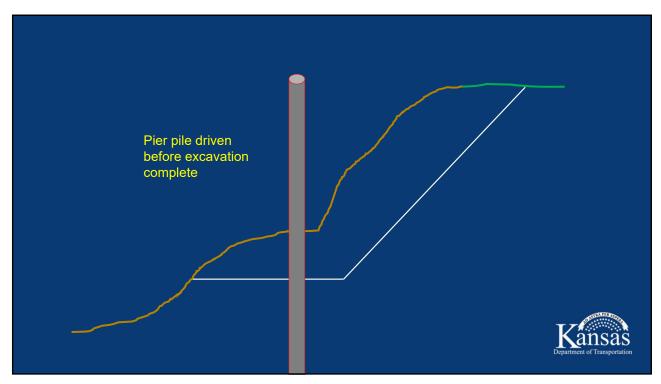
Refer to Subsection 704.3 for pile driving equipment

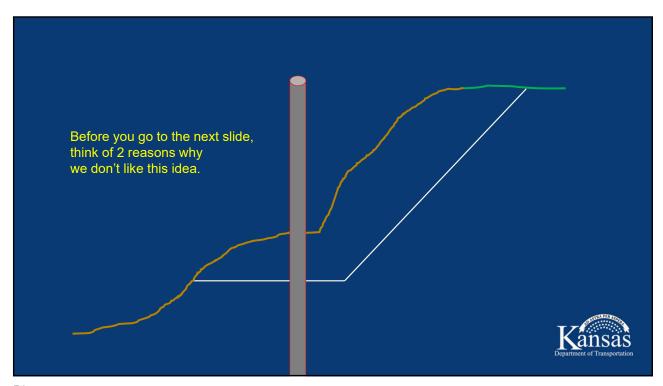
c. Driving piles

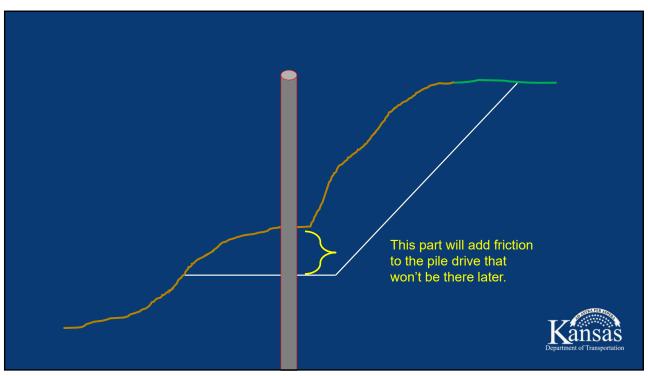
Drive piles at the locations and to lines shown on plans

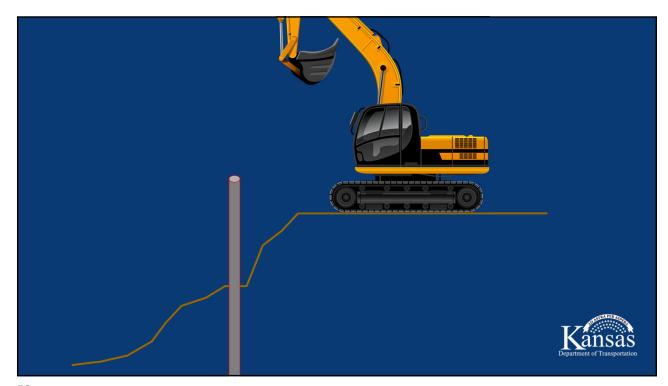
Use leads long enough to be spiked into ground


47


Section 704.4 Construction Requirements 9


c. Driving piles


Do not drive piles until excavation for footing, webwall, or abutment is complete



Section 704.4 Construction Requirements 10

Don't allow a contractor to ignore this spec.

Release the hounds....

c. Driving piles

Drive all piles for a footing or abutment before placing any concrete in the footing or abutment unless pile is over 20 feet from concrete, or unless concrete has cured 24 hours

55

Section 704.4 Construction Requirements 12

(c) Driving piles

Drill pile holes as shown on the plans

Maximum allowed diameter of predrill holes is 3" greater than pile diameter

If predrilling not specified, Contractor may predrill if Engineer approves

c. Driving piles

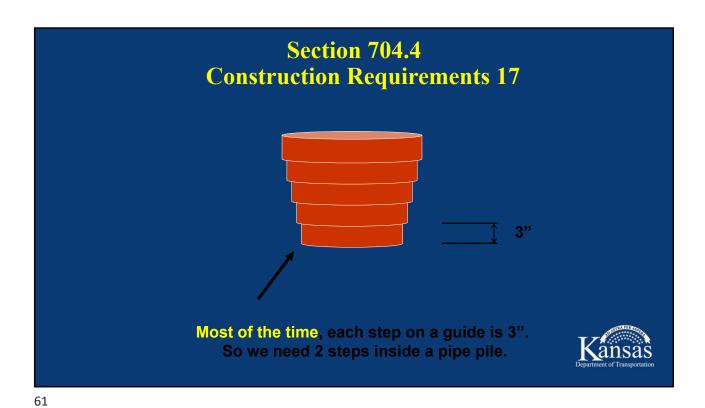
Drive all piling perpendicular to long axis of pile

Use pile caps (helmets) on all piles

c. Driving piles

For pile caps of concrete piles and prestressed concrete piles, use a suitable cushion next to the pile

Pile helmets for steel piles must have grooves to accommodate the shape of the pile


59

Section 704.4 Construction Requirements 16

c. Driving piles

On pipe piles, the helmet must have an interior guide (mandrel) that sticks into the pile at least 6 inches.

c. Driving piles

It is not necessary to have 6 inches of the interior guide up against the pile itself.

Just a total of 6 inches.

No reason--l just think this painting is cool

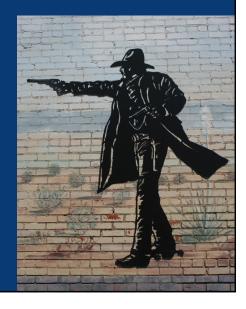
63

Section 704.4 Construction Requirements 19

c. Driving piles

Use full-length pile where practical

Splice steel pile where shown on plans or with permission of Engineer


Provide experienced welder, qualified under Section 713 to make the welded splices for steel pile

(Section 713 is Qualification of Field Welders)

c. Driving piles

Contractor must correct any failed splices at his own expense

65

Section 704.4 Construction Requirements 21

c. Driving piles

Avoid extensions, splices, or build-ups of prestressed concrete piles

Plans will show method for splicing concrete piles

There are no instructions for splicing concrete piles in the Specs

c. Driving piles

Replace any damaged pile with new, longer pile

- --crushing or spalling of concrete pile
- --deformation of steel pile

An additional pile may be driven next to damaged pile, if approved by Engineer

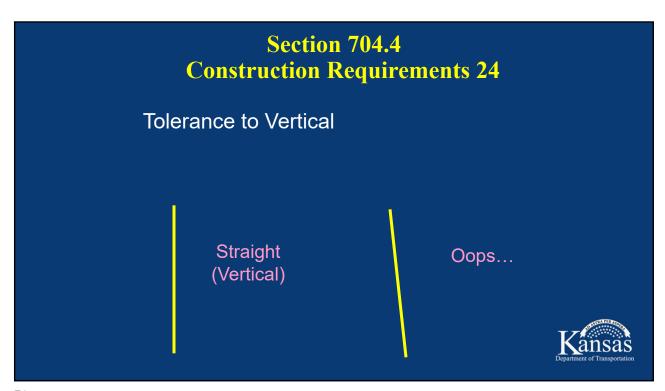
67

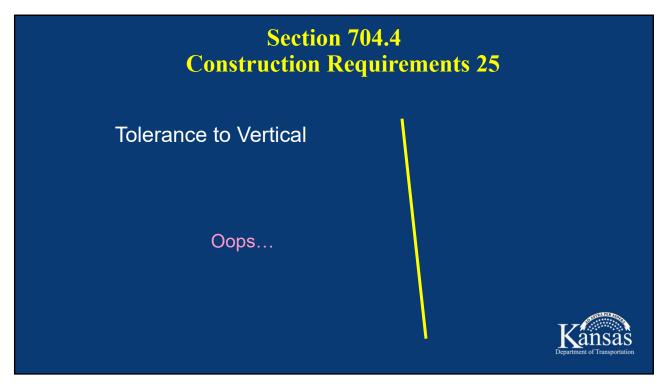
Section 704.4 Construction Requirements 23

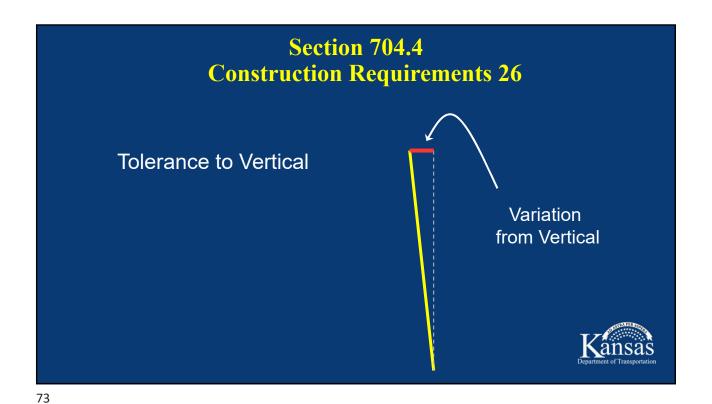
c. Driving piles

Do not force misaligned piles into position

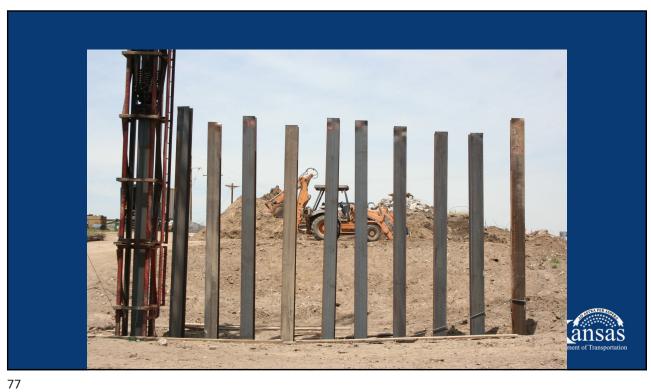
Remove and replace any pile not in its proper location with new, longer pile






Will the pile tip straighten out by doing this?

Is it a good idea to deliberately bend a piece of structural steel in a bridge?



c. Driving piles

Tolerances to Vertical or Battered Lines

Piles 35 feet or shorter: 1/4" per foot of length

Piles longer than 35 feet: 1/8" per foot

81

Driving Tolerances to Vertical—Example

You are driving H-piles into chalky limestone for a 3-pier bridge over Big Possum Creek in southern Gove County. The piers are supported by small pile groups. The order length for piling in Pier 3 is 28 feet. You stop driving when you notice one of the piles seems to be crooked. How can you check to see if it's in spec?

Driving Tolerances to Vertical—Example

Pile Length—28 feet

83

Driving Tolerances to Vertical—Example

Pile Length—28 feet

Tolerance for piles shorter than 35 feet is ¼ inch per foot of pile

Driving Tolerances to Vertical—Example

Pile Length—28 feet

Tolerance for piles shorter than 35 feet is ¼ inch per foot of pile

You have a 4-foot long level.

4 feet x $\frac{1}{4}$ inch / foot = $\frac{7}{4}$

85

Driving Tolerances to Vertical—Example

4 feet x ½ inch / foot = 1 inch

You would measure the distance it is out of plumb, and contact the Bridge Office if it exceeds one inch.

When using a 4-foot level to check, you either have ½" or 1" leeway, depending on the pile length.

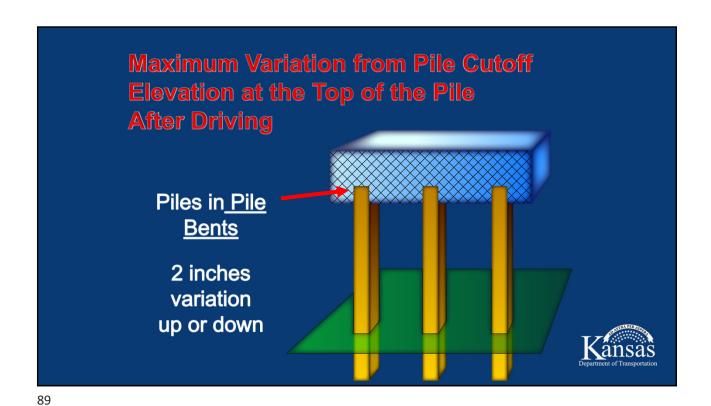
c. Driving piles

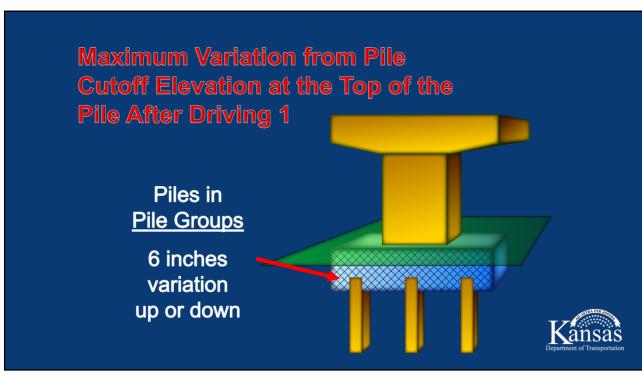
Tolerances to Vertical or Battered Lines

If you don't have enough pile sticking out to measure it directly, have the location surveyed and measure how far off it is.
Then back-calculate.

87

Section 704.4 Construction Requirements 28


c. Driving piles

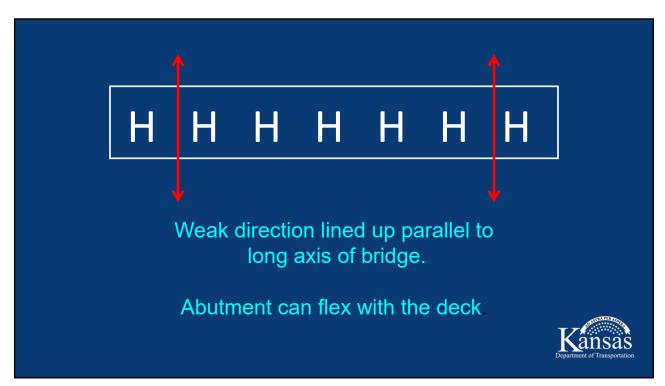

Tolerances to Position of Pile Head (Elevation of Top of Pile)

Piles in bents: 2'

Foundation piles (pile groups): 6"

c. Driving piles

Drive all piles in the orientation shown on the Plans. If the axial orientation of the pile rotates or twists by more than 10°, the Field Engineer (that's you) will contact the bridge designer in Topeka.



нннннн

Typical Pile Bent Abutment

Weak direction lined up perpendicular to long axis of bridge.

Fixed abutment will resist movement.

c. Driving piles

Re-drive all piles pushed up by adjacent pile driving or any other cause

97

Section 704.4 Construction Requirements 31

d. Bearing Values and Required Penetration

Drive piling to the specified bearing value, penetration, and pile tip elevation

Stop driving if 1.1 times the minimum resistance (pile drive formula load) is attained

d. Bearing Values and Required Penetration

Stop driving if the pile will be damaged before the minimum requirements are met

99

Section 704.4 Construction Requirements 33

d. Bearing Values and Required Penetration

If required bearing can't be obtained, the number of piling may be increased with the approval of the Engineer (bridge engineer in Topeka)

d. Bearing Values and Required Penetration

This would only be done after splicing and restriking have been tried.

Adding piling is rarely needed.

101

Section 704.4 Construction Requirements 35

TABLE 704-1: PILE FORMULAS		
Hammer	Pile Type	Formula
Gravity	Timber	$P = \frac{2 W H}{S + 1.0}$
Gravity	Steel Steel Shell Steel Sheet	$P = \frac{3 \text{ W H}}{S + 0.35} \left(\frac{W}{(W + X)} \right)$
Air/Steam (Single Acting)	All Types	$P = \frac{2 W H}{S + 0.1}$
Air/Steam (Double Acting)	All Types	$P = \frac{2}{S + 0.1}$
Delmag and McKierman-Terry*	All Types	$P = \frac{1.6 \text{ W H}}{S + 0.1 \left(\frac{X^{**}}{W}\right)}$
Link-Belt*	All Types	$P = \frac{1.6 \text{ E}}{S + 0.1 \left(\frac{X^{**}}{W}\right)}$

*diesel hammers

P = safe bearing power in pounds

^{**} For diesel hammers, the quantity X/W shall not be less than 1.

d. Bearing Values and Required Penetration

Formulas only apply when:

Hammer falls freely

Penetration is quick and uniform

No significant bounce after the strike

103

Section 704.4 Construction Requirements 37

d. Bearing Values and Required Penetration

If water jets used, determine bearing capacity after jets have been removed

d. Bearing Values and Required Penetration

If a different brand of **diesel** hammer is used besides the 3 listed in the Formula Table, use 80 % (0.80) of the manufacturer's listed energy rating in the formula to determine bearing capacity.

105

Section 704.4 Construction Requirements 39

d. Bearing Values and Required Penetration

For an **air** hammer, use 100 % of the manufacturer's listed energy rating in the formula to determine bearing capacity and to check if the hammer is large enough.

e. Pile Restrike Procedure

If pile doesn't get resistance within a few feet of plan elevation, a restrike may be used

Call the Regional Geology Office for help

107

Section 704.4 Construction Requirements 41

e. Pile Restrike Procedure

(1) No test piles called for on bridge and PDA not available

Drive all piles in group to within 2 feet of plan

Leave them alone for at least 24 hours

e. Pile Restrike Procedure

Warm up hammer far from piles to restrike

Immediately restrike 20% of piles in group, minimum of 2 piles per group

Restrike piles farthest from each other

When possible, restrike those with lowest resistance during driving

109

Section 704.4 Construction Requirements 43

e. Pile Restrike Procedure

Strike a pile with warm hammer for 20 blows or until it moves 4 inches, whichever comes first

Record penetration for every 5 blows

If pile moves less than ½ inch, stop restrike after 10 blows

- e. Pile Restrike Procedure
 - (1) No test piles called for on bridge and PDA not available

Calculate resistance based on average penetration for *first 5 blows*

Resistance for all piling in group is the resistance calculated for that one pile. Pretty sweet, huh?

111

Section 704.4 Construction Requirements 45

e. Pile Restrike Procedure

If calculated resistance is too low, splice and resume driving

Look sad and say "doh"....

e. Pile Restrike Procedure

(2) Test pile called for on bridge and PDA not available

Treat the test pile as you would a common restrike, using the above rules.

113

Section 704.4 Construction Requirements 47

e. Pile Restrike Procedure

(3) Test Pile (Special) called for on bridge or PDA is available

Follow recommendations of the Regional Geologist

f. Pile Cut-off and Pile Painting

(1) After piles are driven, cut them off at the designated elevation

If capping is required, make the connection as shown in the Contract

115

Section 704.4 Construction Requirements 49

f. Pile Cut-off and Pile Painting

Pieces cut off become property of KDOT, if the Engineer wants them.

(f) Pile Cut-off and Pile Painting

Some Area Engineers or Area Construction Engineers automatically salvage pieces longer than 5 or 6 feet.

Others try to decide whether their KDOT area will need piling pieces in the near future.

117

This is one way of cutting off a pile...

Section 704.4 Construction Requirements 51

f. Pile Cut-off and Pile Painting

(1) Pile pieces not wanted by the Engineer become the property of the Contractor

f. Pile Cut-off and Pile Painting

(2) Paint the exposed steel of piling using the same kind of paint and number of coats as used for structural steel of bridge

Paint the piling in the field

121

Section 704.4 Construction Requirements 53

f. Pile Cut-off and Pile Painting

(2) If no painting specified in plans:

Use prime coat of inorganic zinc

Use acrylic or polyurethane finish coat

See Division 700

Section 704.4 Construction Requirements 54

f. Pile Cut-off and Pile Painting

(2) Paint the piling for a distance of one

foot below:

Bottom of channel

Top of embankment

Natural ground

Normal low-water elevation

123

Section 704.4 Construction Requirements 55

g. Cast-In-Place Concrete Piles

(also called "Shell Piles" and "Closed-end Pipe Piles")

After steel shells are driven, remove all loose material from inside shells

Fill the shells with Grade 3.5 concrete unless the plans say otherwise

Section 704.4 Construction Requirements 56

g. Cast-In-Place Concrete Piles

Don't place concrete in shells until all driving within 15 feet is finished

Of

Until all piles for that bent are driven

125

Section 704.4 Construction Requirements 57

g. Cast-In-Place Concrete Piles

If that isn't possible, stop driving until concrete in all piles for that bent has cured at least 7 days

Remove water from inside the shells before placing concrete

g. Cast-In-Place Concrete Piles

Vibrate the concrete in the upper 15 feet of the shell

127

Section 704 Piling 704.5 Measurement and Payment

The Engineer (that's you) will measure:

Length of steel piling left in bridge, by linear foot

Length of concrete pile from the tip to the place where it is cut to connect with the cap or footing

Do not include the length of reinforcing steel at the top of prestressed concrete piles

The Engineer (that's you) will measure:

Actual length of ordered and accepted test piles by the linear foot

Each cast steel pile point used

129

Section 704 Piling 704.5 Measurement and Payment 2

The Engineer (that's you) will measure:

Each pile splice needed that wasn't called for in the plans

In other words, when we had to splice because the geology didn't behave

For all types of steel and concrete pile, if a splice is needed and not shown on the plans, the cost of the splice is:

4 times the contract unit price per foot of the pile type

131

Contract unit cost of steel H-pile = \$32.00 per foot

The cost of a splice for this type of pile is 4 times the contract unit price per foot

The splice would cost $$36.00 \times 4 = 144.00

133

Section 704 Piling 704.5 Measurement and Payment 5

Do **not** measure for payment :

Splices shown on the plans

Splices the contractor did for his own convenience

The Engineer (that's you) will measure:

Predrilled holes by the linear foot

Measure from bottom of hole to the bottom of footing (pile cap) or abutment

135

Section 704 Piling 704.5 Measurement and Payment 7

If the Contractor drills deeper than the plans call for, do not measure the extra depth

If Contractor uses predrilling for his convenience, do not measure for payment

The Engineer (that's you) will measure:

Pile cut-off by the linear foot

Pile cut-off is the difference between the length of pile ordered and accepted and the actual length of pile remaining in the bridge

137

Section 704 Piling 704.5 Measurement and Payment 9

Length Ordered and Accepted

---- Length left in bridge

= Length of pile cut-off

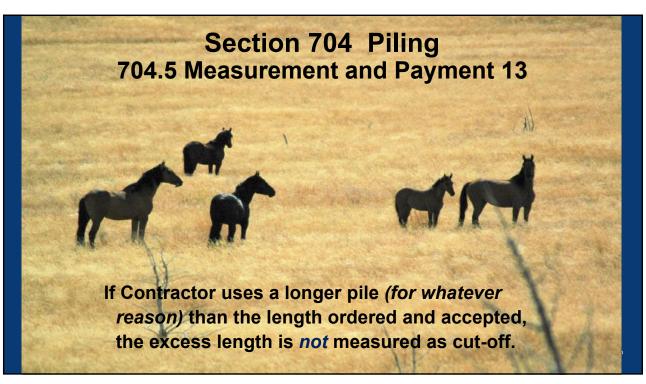
TABLE 704-2: PILE CUT-OFF PAYMENT	
Pile Type	% of Contract Unit Price Paid
Cast-in-place (Shell)	60
Pre-stressed concrete	75
Steel	75
Steel Sheet	75

139

Section 704 Piling 704.5 Measurement and Payment 11

Steel Pile = 75% of the Contract unit price for steel piles

Prestressed Concrete Pile = 75% of the Contract unit price for prestressed concrete piles



Cast-in-place concrete piles = 60% of the contract unit price for concrete piles

Steel Sheet Pile = 75% of the contract unit price for steel sheet piles

141

Materials Section 1609 Steel Piling and Pile Points

Page 1600-18

Steel Pile:

Explains type of steel accepted (ASTM)

Discusses types of welds on pipe pile

Lists the diameter tolerances on pipe pile

143

Materials Section 1609 Steel Piling and Pile Points 1

Page 1600-18

Pile Points:

Fabricated or cast from steel

References ASTM Standards

