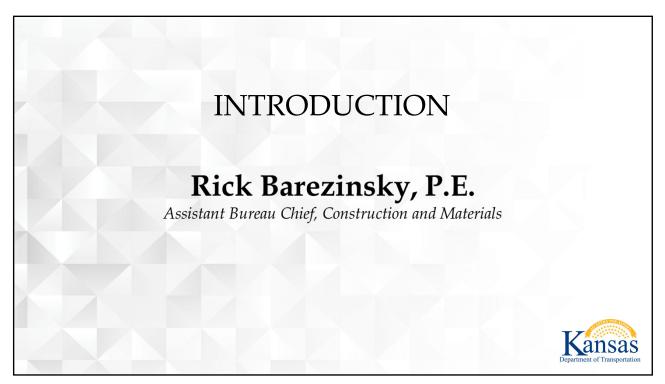
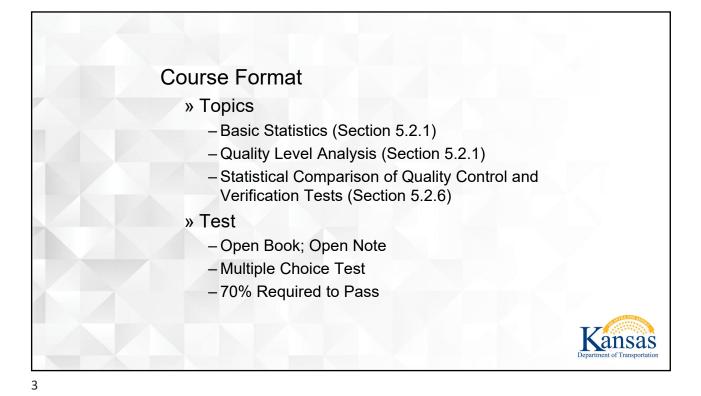
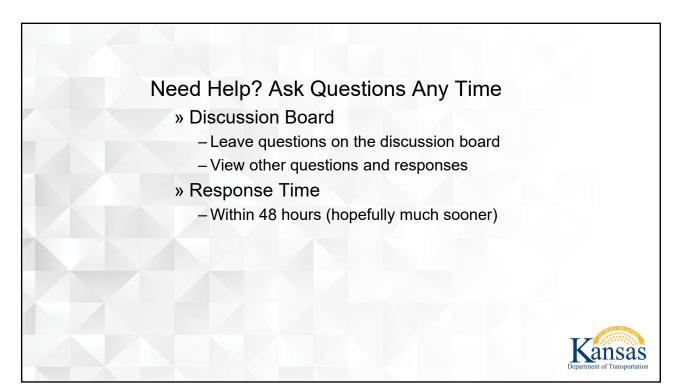


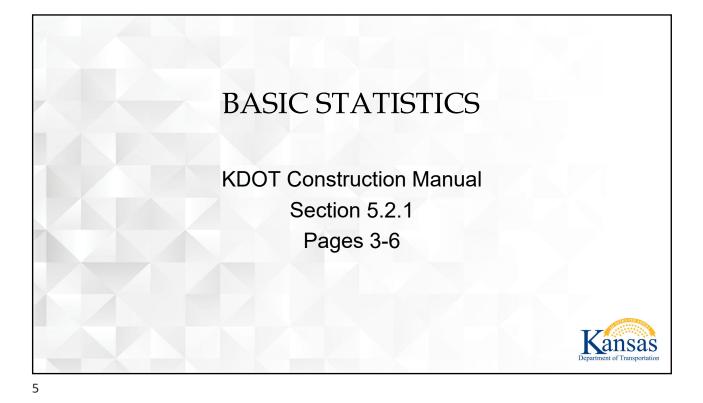
Statistics Workbook

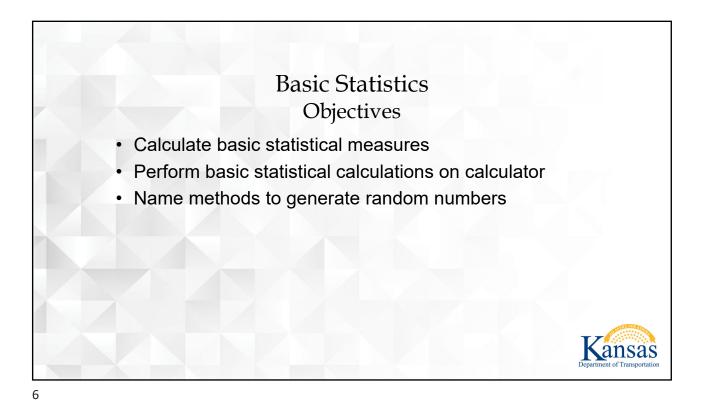
Certified Inspector Training Program

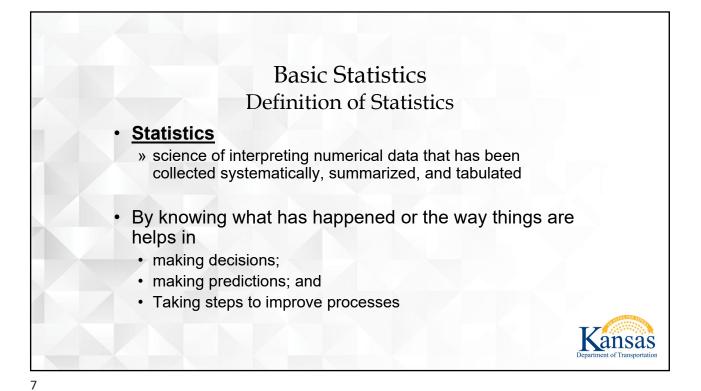

Statistics Workbook

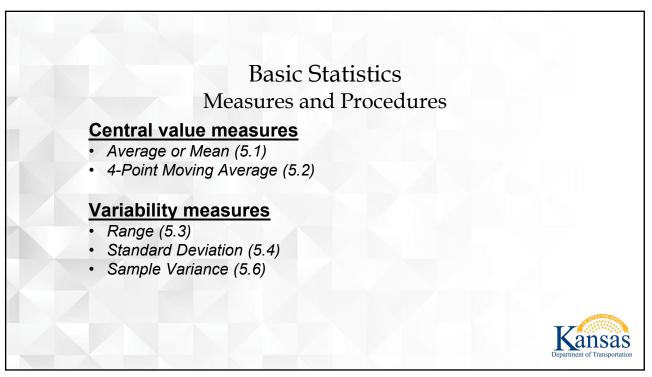

Table of Contents

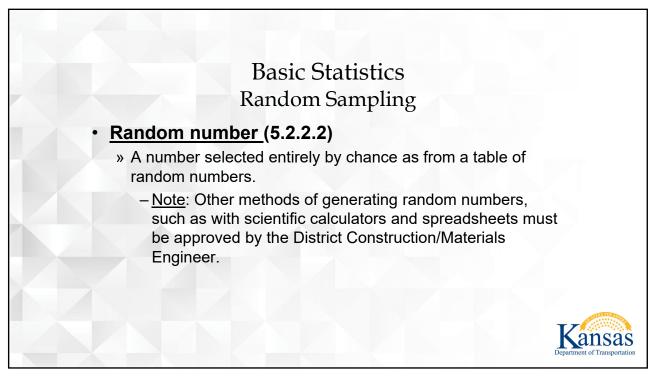

Click on the section name below to be taken to the correct page.


- 1. Basic Statistics
- 2. Normal Distribution Curve
- 3. Quality Level Analysis
- 4. Statistical Comparison of Quality Control and Verification Tests
 - a. Part 1 F-test method
 - b. Part 2 t-test method
- 5. Practice Problems

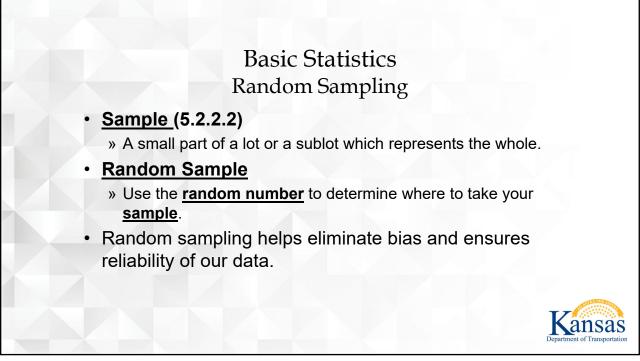


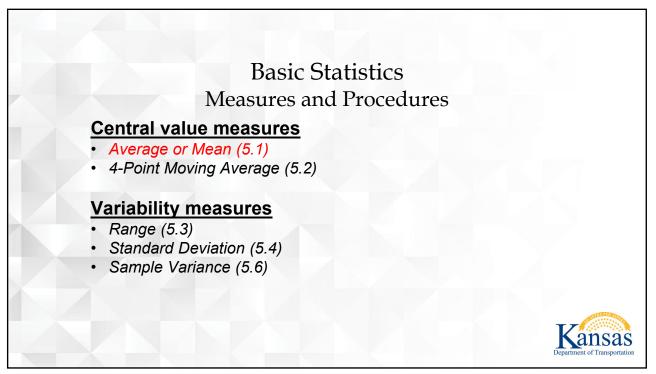


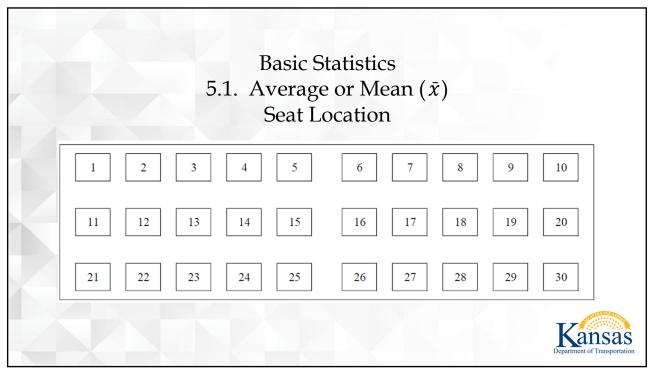


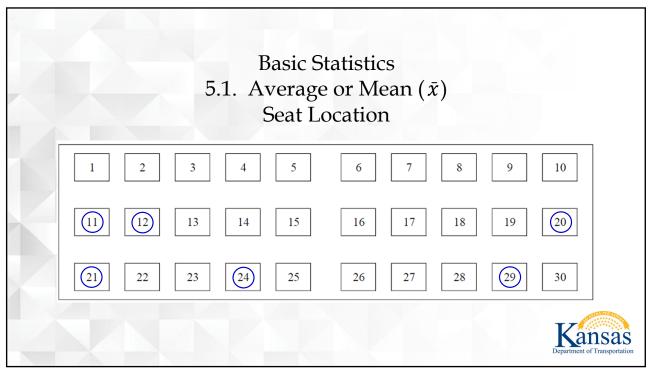

Basic Statistics Common Terms

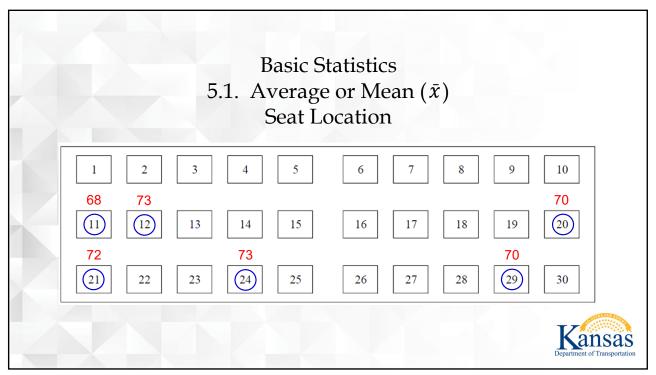
Data Set - a group of data (numbers)

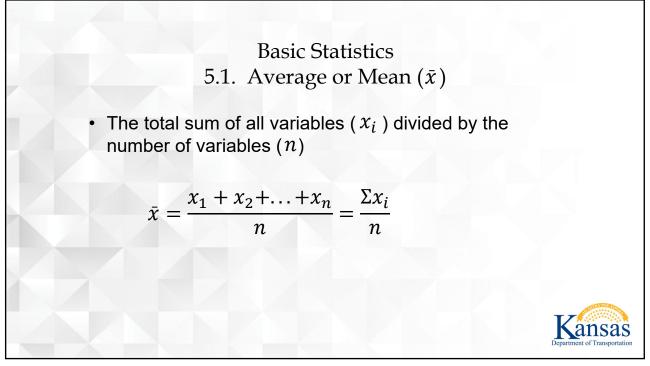

» Numbers usually represented as variable (x_i)

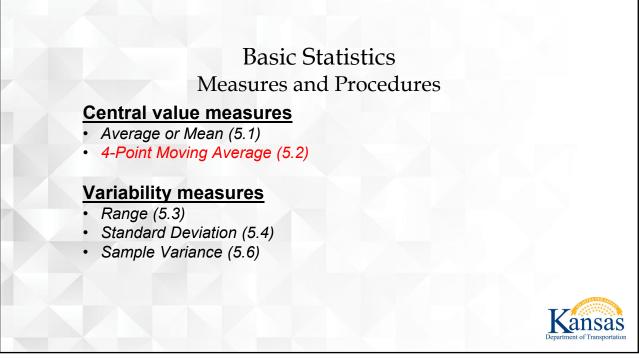

- $-x_1$ represents first number in data set,
- $-x_2$ represents second number in data set, etc...

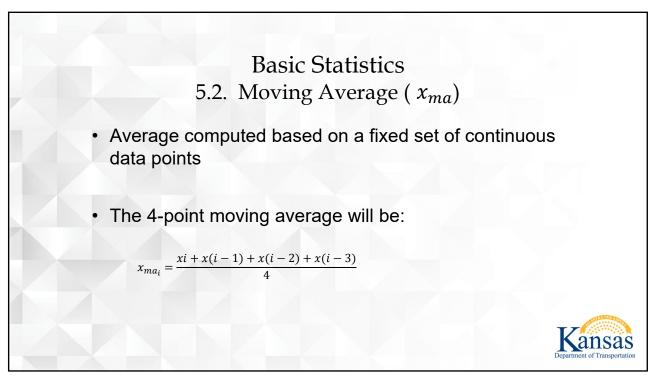

» Total number of variables represented as n

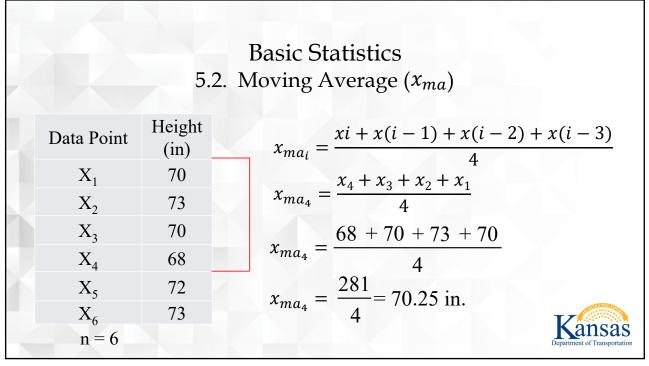

Kansas

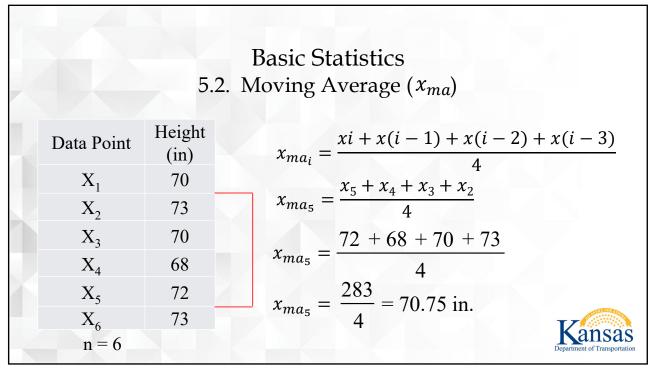


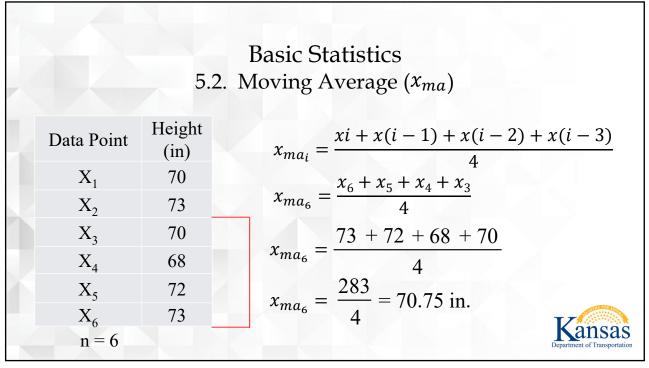

	Basic Statistics		
5.1.	Average or Mean (\bar{x})	
Data Point	Random Location	Height	
Data Point	Seat Location (1-30)	(in)	
X_1	29		
X ₂	24		
X ₃	20		
X_4	11		
X_5	21		
X_6	12		V
			Department of Transportation

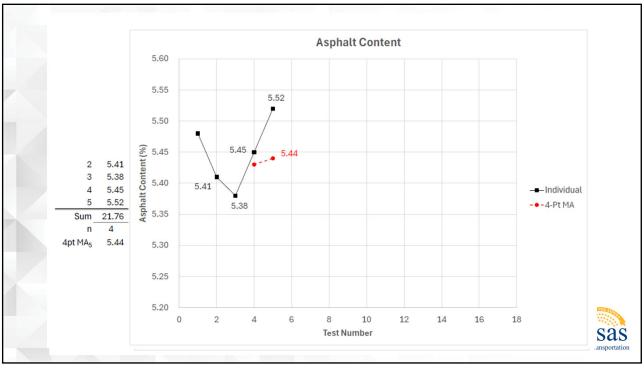


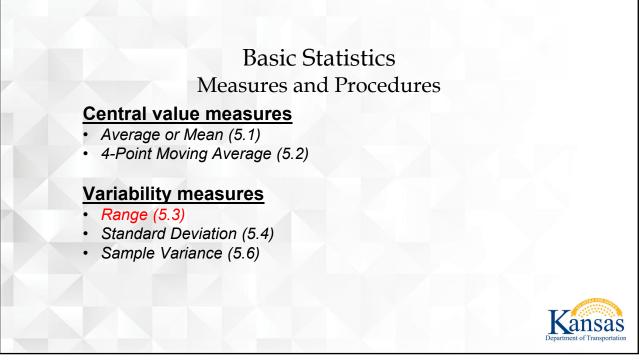

	Basic Statistics		
5.1.	Average or Mean (\bar{x})	
Data Point	Random Location	Height	
Data Politi	Seat Location (1-30)	(in)	
X_1	29	70	
X_2	24	73	
X ₃	20	70	
X_4	11	68	
X_5	21	72	
X_6	12	73	Vanaaa
			Department of Transportation

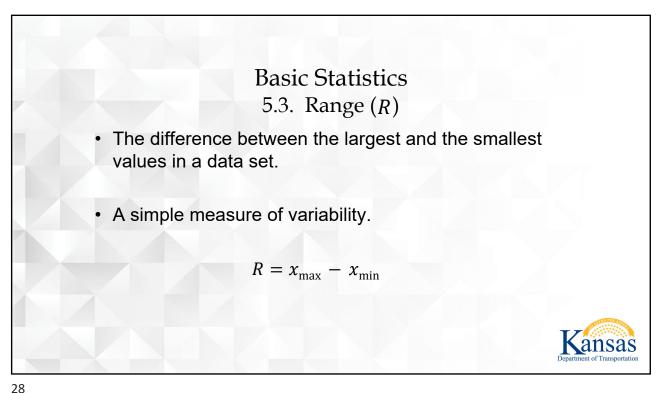

5.1.	Basic Stat Average o		(\bar{x})	
	Data Point	Height (in)	n = 6	
	X_1	70		
	X_2	73		
	X ₃	70		
	X_4	68		
	X_5	72		
	X ₆	73		Kansas Department of Transportation

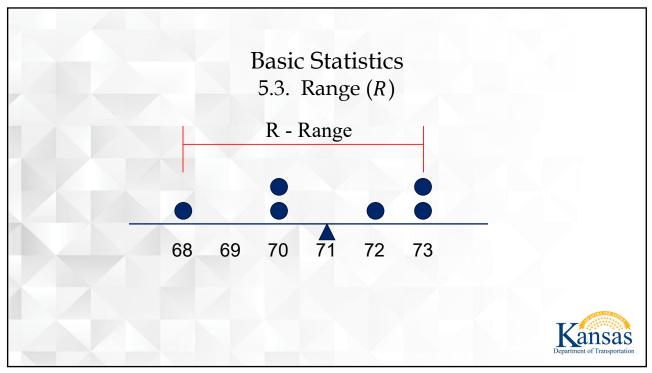


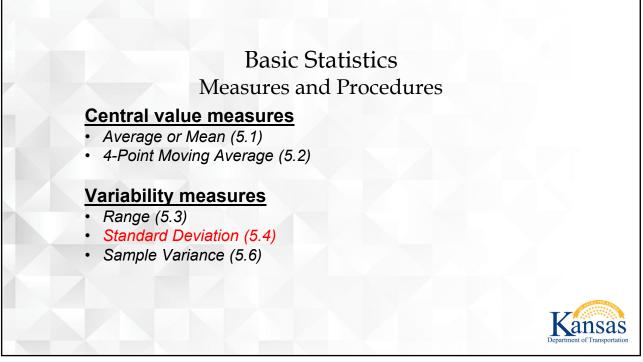

		Basic Statistics	
	5.	1. Average or Mean (\bar{x})	
Data Point	Height (in)	$\bar{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5 + x_6}{x_1 + x_2 + x_3 + x_4 + x_5 + x_6}$	
\mathbf{X}_{1}	70	n	
X ₂	73	$\overline{70}$ 70 + 73 + 70 + 68 + 72 + 73	
X ₃	70	$x \equiv \frac{6}{6}$	
X_4	68	126	
X_5	72	$\bar{x} = \frac{426}{6} = 71$ in.	
X_6	73	0	TZ
n = 6	426		Department of Transportation

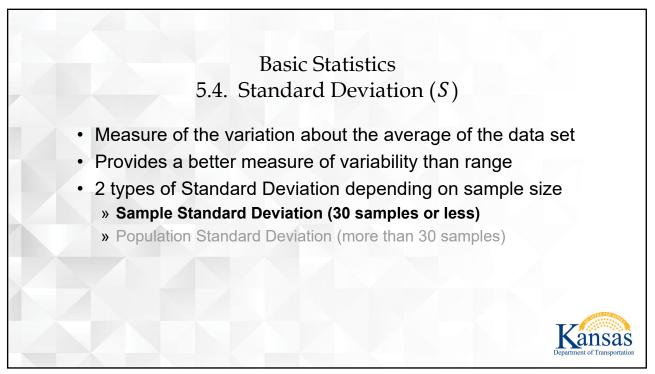


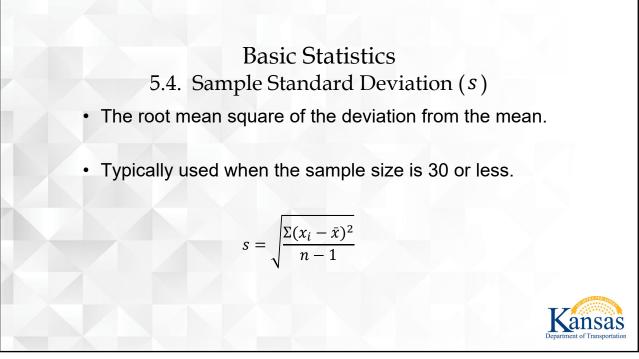


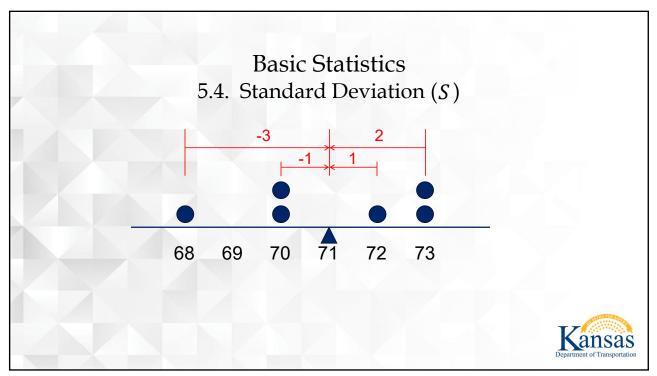


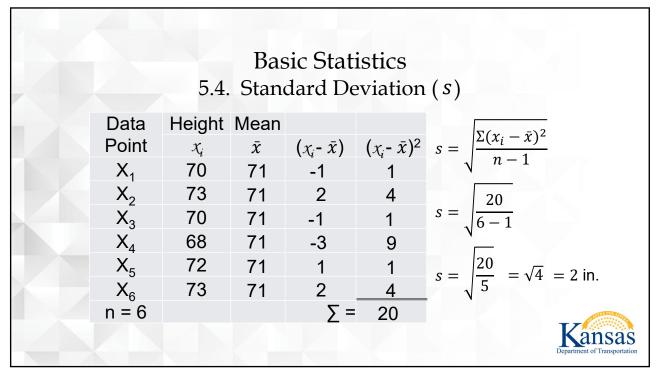


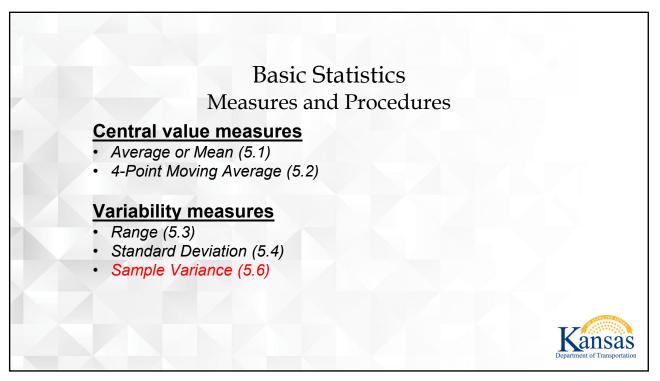


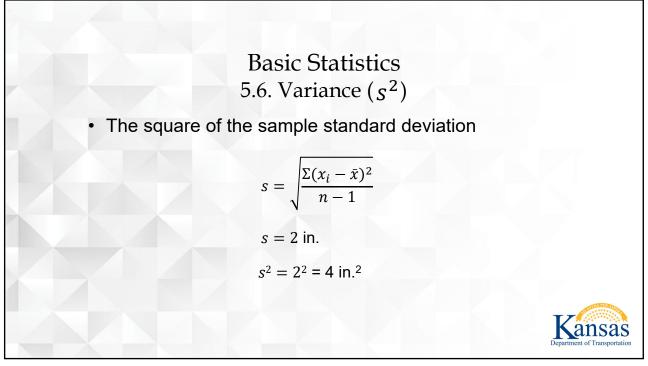


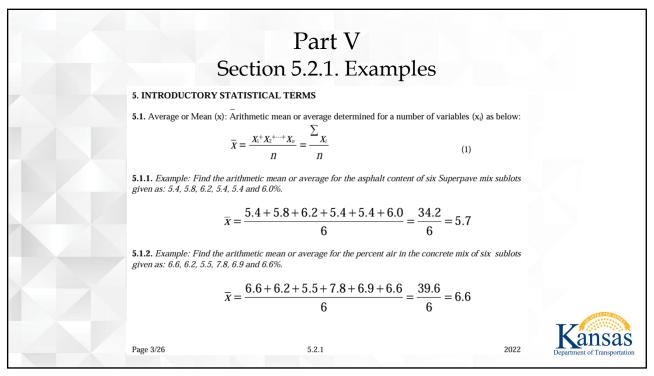


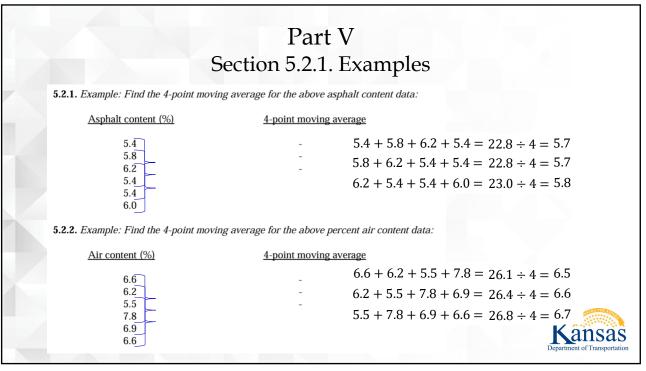


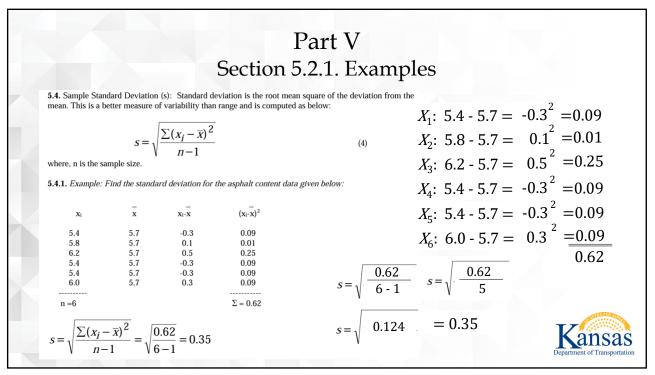

Basic Statistics 5.3. Range (<i>R</i>)					
	Data Point	Height (in)	Max/Min	$R = x_{\max} - x_{\min}$	
	X_1	70		R = 73 - 68	
	X_2	73	Max	n = 75 - 00	
	X_3	70		R = 5 in.	
	X_4	68	Min		
	X_5	72			
	X ₆	73	Max		Kansas
	n = 6				Department of Transportation

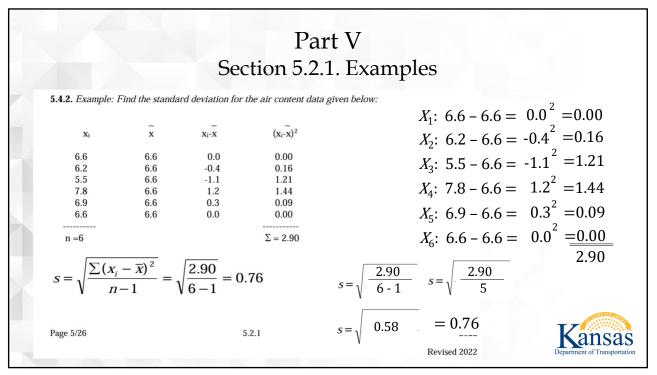


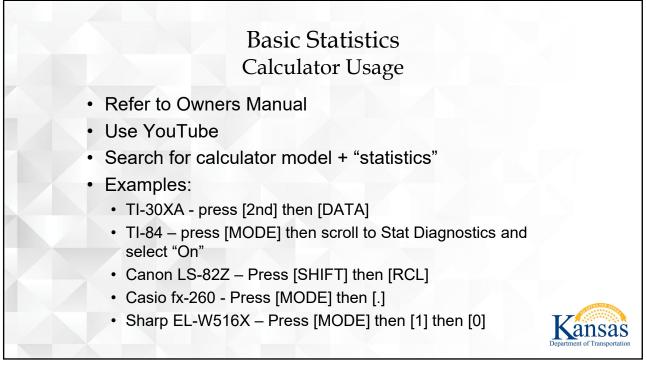


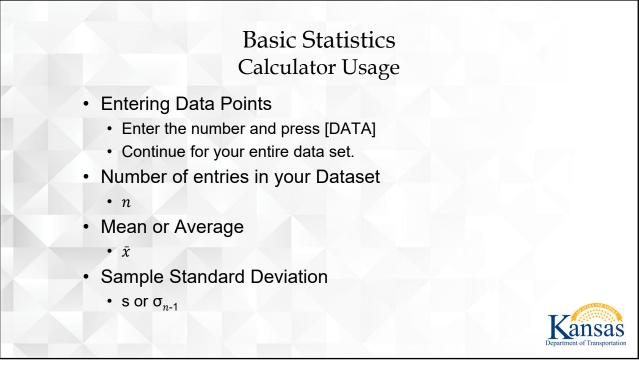


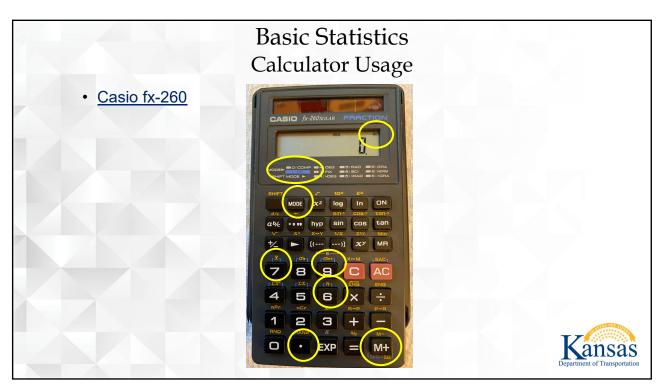


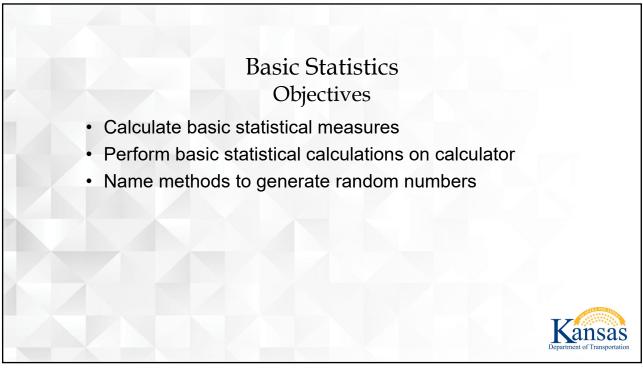


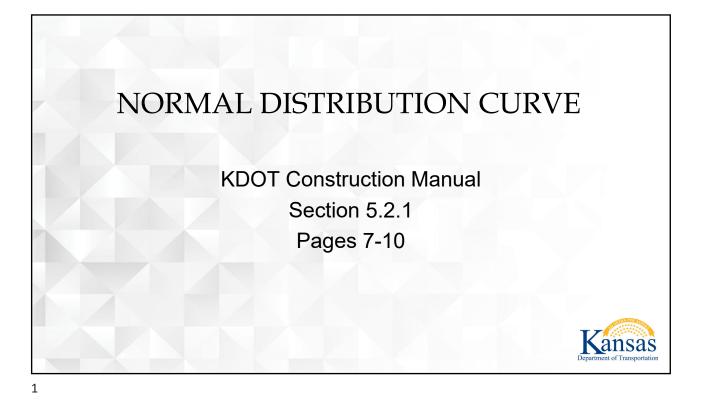


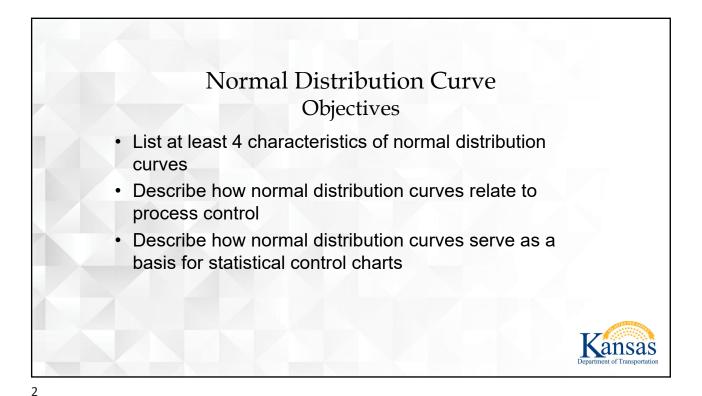


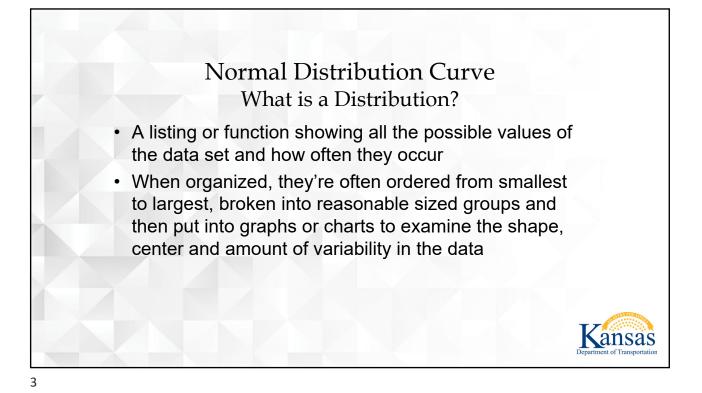


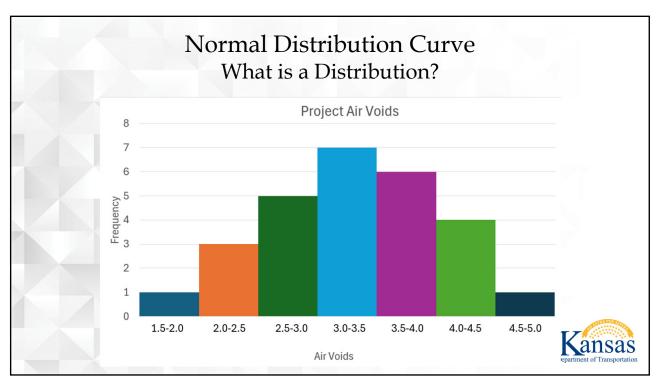


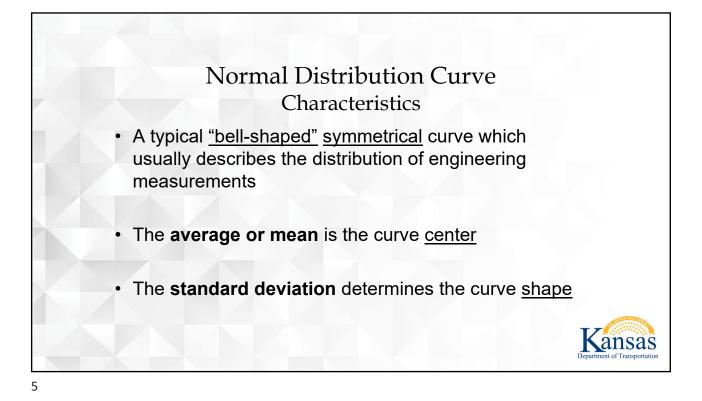


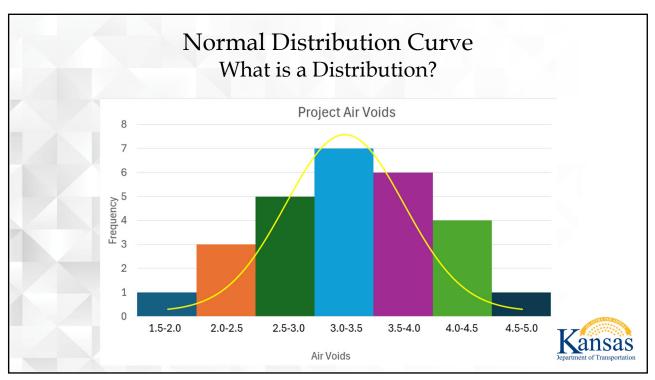


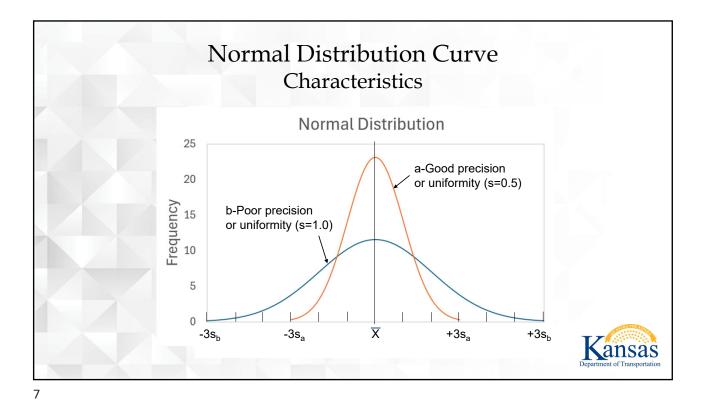


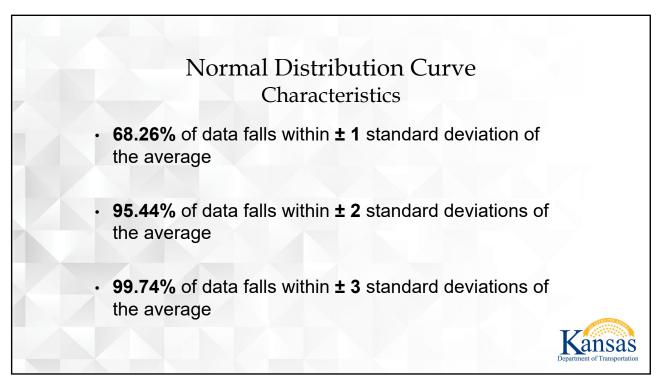


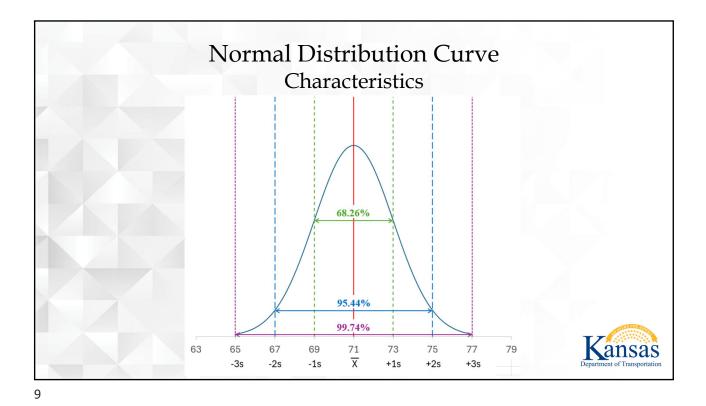


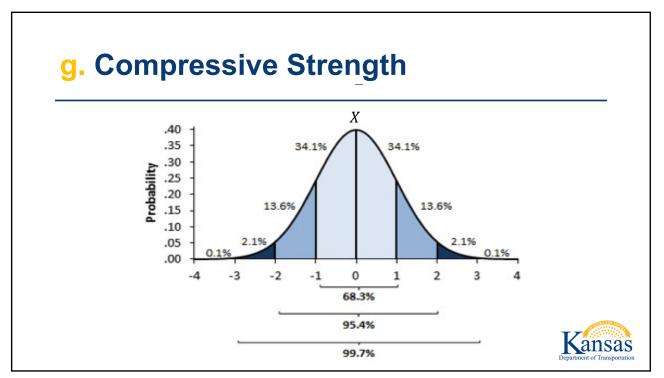


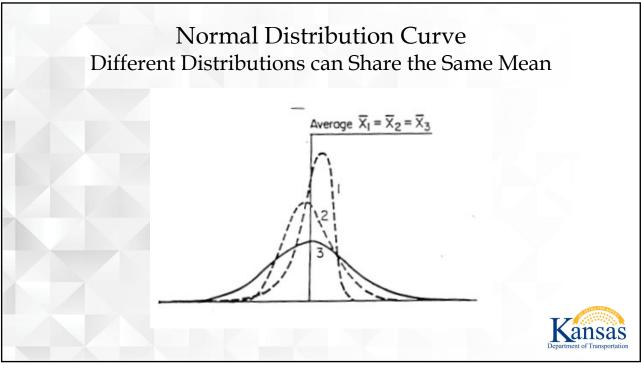


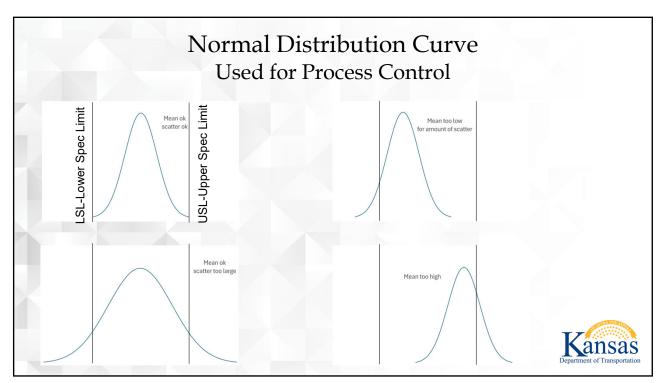


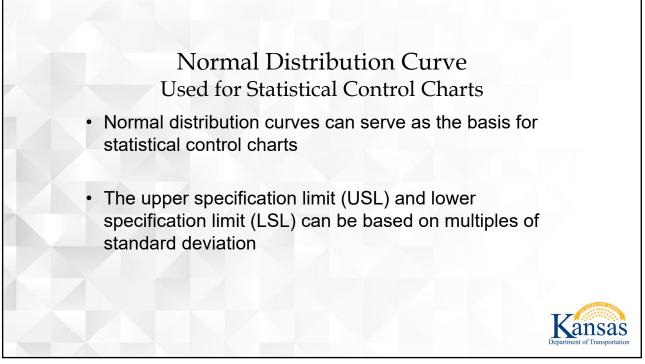


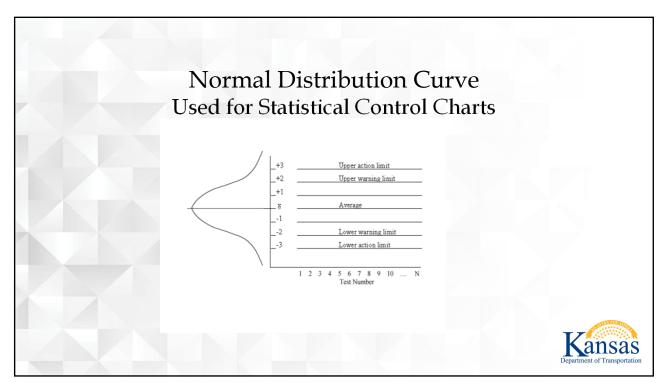


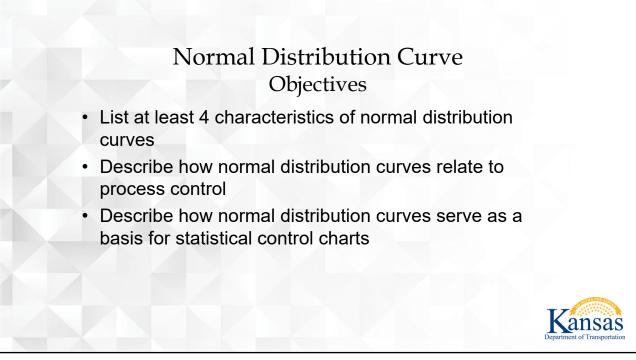


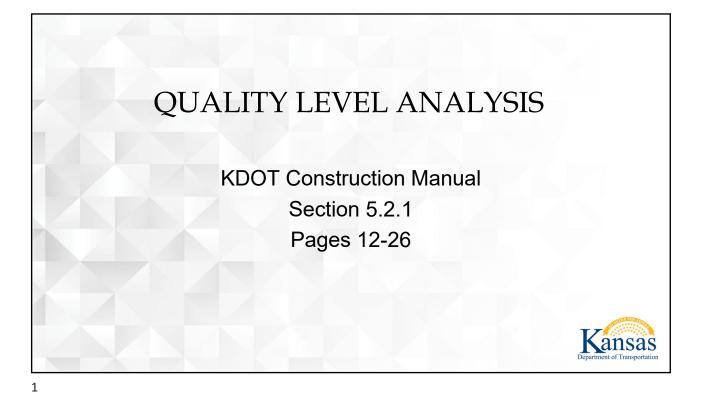


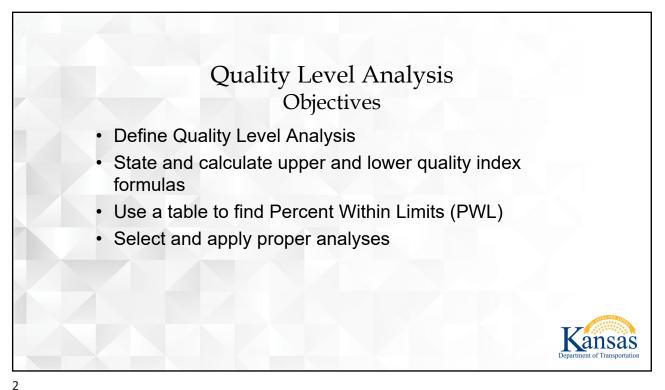


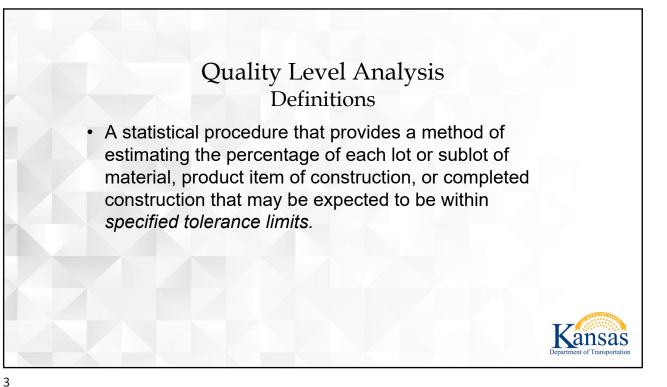


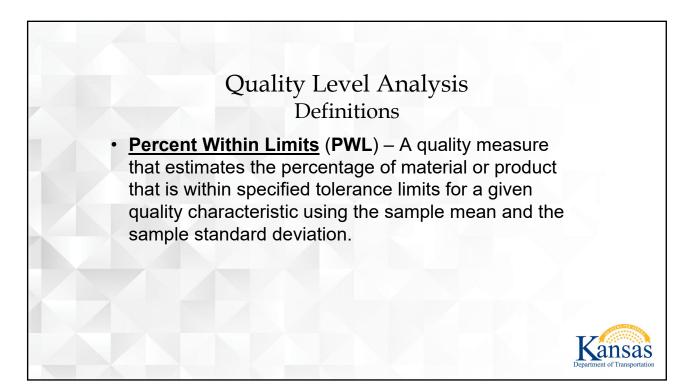


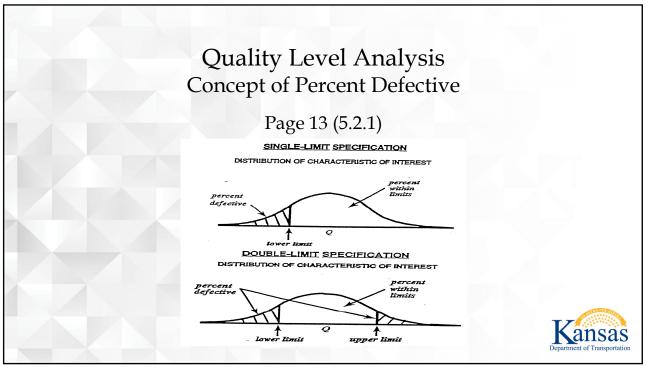


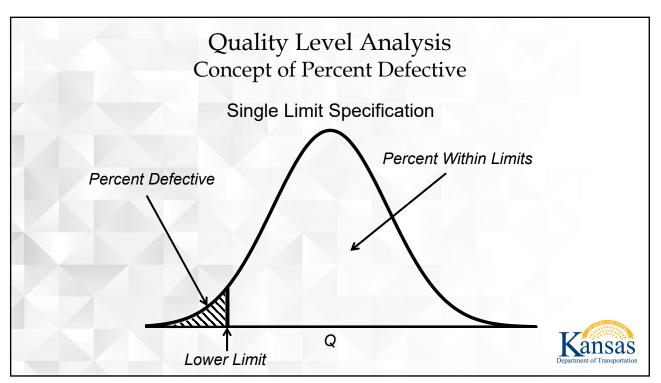


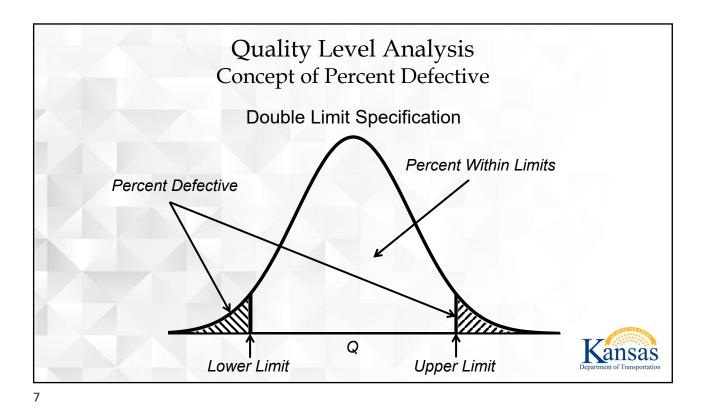


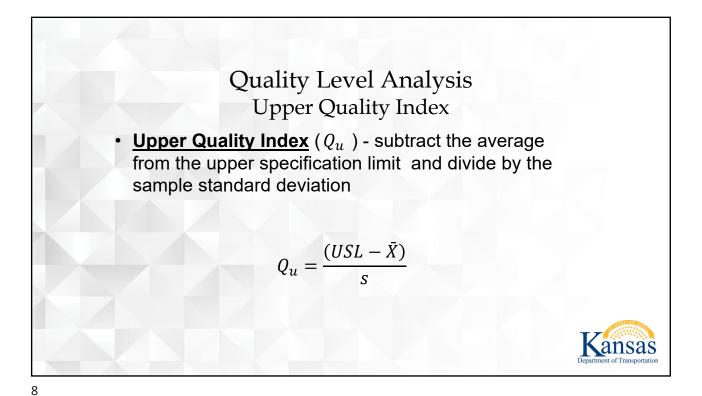


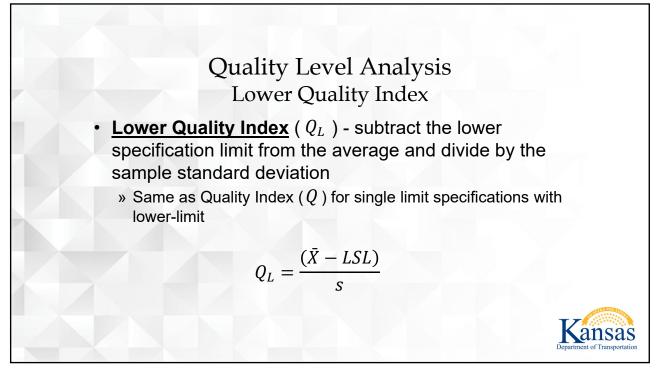


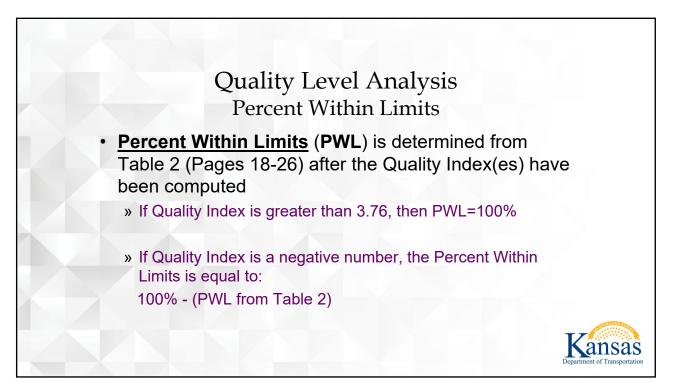


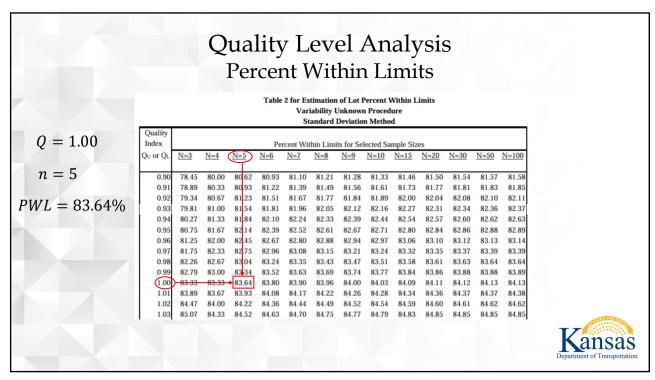


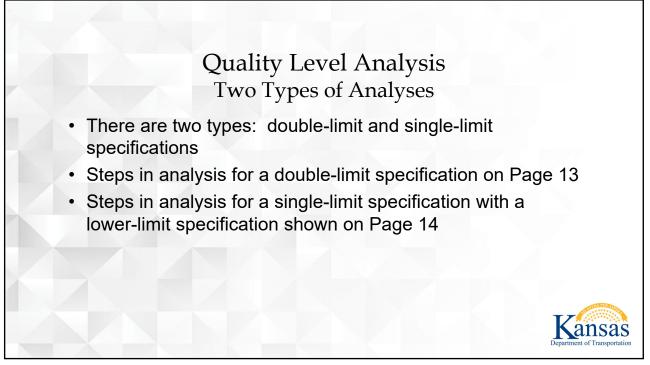


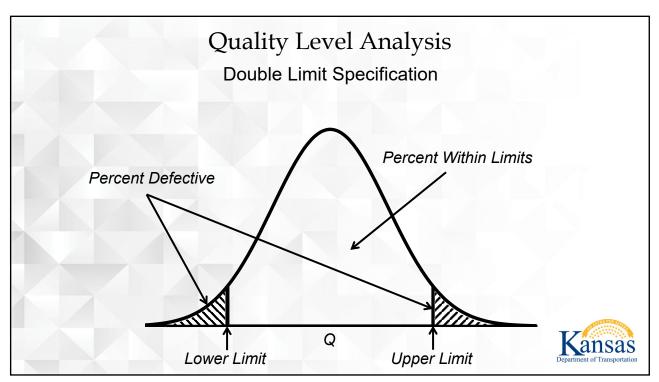






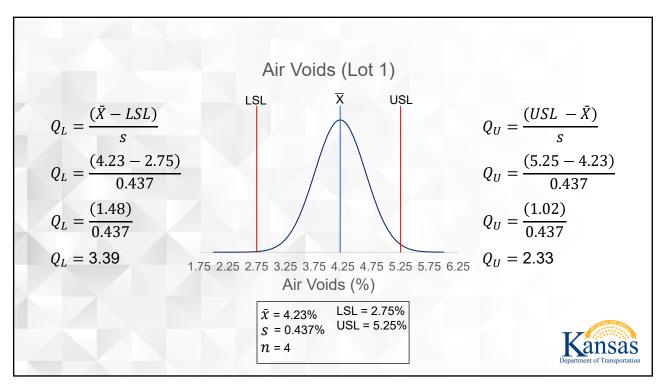


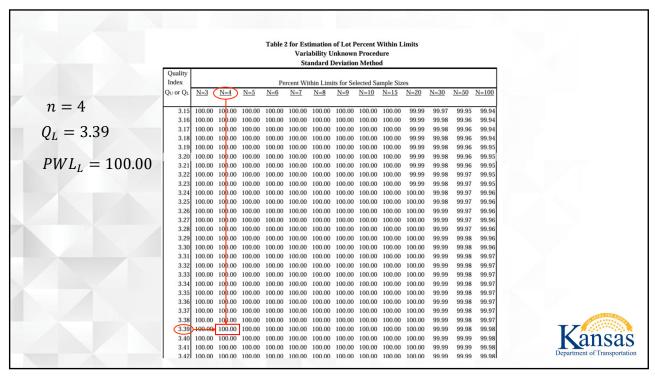



				Table	Vari	timation ability U	Jnknown	Proced	ure	imits						
0.1					St	andard	Deviatio	n Metho	d							
Quality																
Index						hin Limi			1							
Q _U or Q _L	<u>N=3</u>	<u>N=4</u>	<u>N=5</u>	<u>N=6</u>	N=7	<u>N=8</u>	<u>N=9</u>	<u>N=10</u>	<u>N=15</u>	<u>N=20</u>	<u>N=30</u>	<u>N=50</u>	<u>N=100</u>			
1.35	100.00	95.00	92.98	92.37	92.08	91.90	91.78	91.70	91.48	91.39	91.31	91.24	91.19			
1.36	100.00	95.33	93.21	92.58	92.27	92.09	91.96	91.88	91.65	91.56	91.47	91.40	91.35			
1.37	100.00	95.67	93.44	92.78	92.46	92.27	92.14	92.05	91.82	91.72	91.63	91.56	91.51			
1.38	100.00	96.00	93.67	92.98	92.65	92.45	92.32	92.23	91.99	91.88	91.79	91.72	91.67			
1.39	100.00	96.33	93.90	93.18	92.83	92.63	92.49	92.40	92.15	92.04	91.95	91.88	91.82			
1.40	100.00	96.67	94.12	93.37	93.02	92.81	92.67	92.56	92.31	92.20	92.10	92.03	91.98			
1.41	100.00	97.00	94.34	93.57	93.20	92.98	92.83	92.73	92.47	92.36	92.26	92.18	92.13			
1.42	100.00	97.33	94.56	93.76	93.38	93.15	93.00	92.90	92.63	92.51	92.41	92.33	92.27			
1.43	100.00	97.67	94.77	93.95	93.55	93.32	93.17	93.06	92.78	92.66	92.56	92.48	92.42			
1.44	100.00	98.00	94.98	94.13	93.73	93.49	93.33	93.22	92.93	92.81	92.70	92.62	92.56			
1.45	100.00	98.33	95.19	94.32	93.90	93.65	93.49	93.37	93.08	92.96	92.85	92.76	92.70			
1.46	100.00	98.67	95.40	94.50	94.07	93.81	93.65	93.53	93.23	93.10	92.99	92.90	92.84			
1.47	100.00	99.00	95.61	94.67	94.23	93.97	93.80	93.68	93.37	93.25	93.13	93.04	92.98			
1.48	100.00	99.33	95.81	94.85	94.40	94.13	93.96	93.83	93.52	93.39	93.27	93.18	93.12			
1.49	100.00	99.67	96.01	95.02	94.56	94.29	94.11	93.98	93.66	93.52	93.40	93.31	93.25			
1.50	100.00	100.00	96.20	95.19	94.72	94.44	94.26	94.13	93.80	93.66	93.54	93.45	93.38			
1.51	100.00	100.00	96.39	95.36	94.87	94.59	94.40	94.27	93.94	93.80	93.67	93.58	93.51			
1.52	100.00	100.00	96.58	95.53	95.03	94.74	94.55	94.41	94.07	93.93	93.80	93.71	93.64			
1.53	100.00	100.00	96.77	95.69	95.18	94.88	94.69	94.55	94.20	94.06	93.93	93.83	93.76			
1.54	100.00	100.00	96.95	95.85	95.33	95.03	94.83	94.69	94.33	94.19	94.05	93.96	93.89			
1.55	100.00	100.00	97.13	96.00	95.48	95.17	94.97	94.82	94.46	94.31	94.18	94.08	94.01		TRA PER	
1.56	100.00	100.00	97.31	96.16	95.62	95.31	95.10	94.95	94.59	94.44	94.30	94.20	94.13		Sugar States	
1.57	100.00	100.00	97.48	96.31	95.76	95.44	95.23	95.08	94.71	94.56	94.42	94.32	94.25		and	00
Page 21/	26					5.2.1							2022	Departm	ans of Transp	as
												Revis	ed 2022			

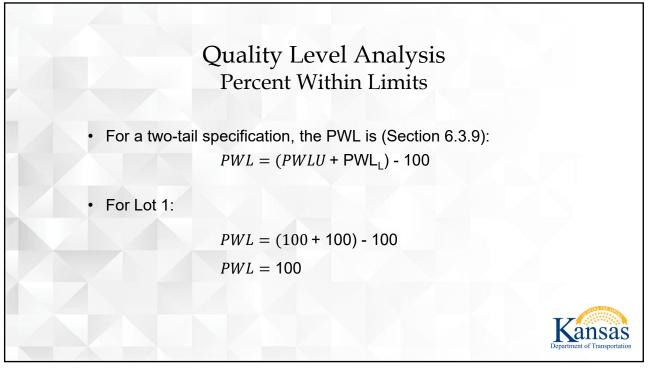
					Var	iability I	Unknown	Percent V n Proced						
Quality					S	andard	Deviatio	n Metho	a				_	
Quality Index				P					1.0					Dage 26 of 20
								lected Sa				11 50		Page 26 of 26
QU or QL	<u>N=3</u>	<u>N=4</u>	<u>N=5</u>	<u>N=6</u>	<u>N=7</u>	<u>N=8</u>	<u>N=9</u>	<u>N=10</u>	<u>N=15</u>	<u>N=20</u>	<u>N=30</u>	<u>N=50</u>	<u>N=100</u>	5.2.1
3.60	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	99.99	
3.61	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	99.99	
3.62	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.63	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.64	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.65	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.66	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.67	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.68	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.69	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.70	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.71	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.72	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.73	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.74	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.75	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	99.99	
3.76	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
integratii	ng the b PWL f	eta dist rom the	ribution e tables	n functi , comp	on corr	espond from th	ing to Q ne samp	Quality	Index (Q) and sample	Sample	Size (N	umerically v). ation with	Kansa

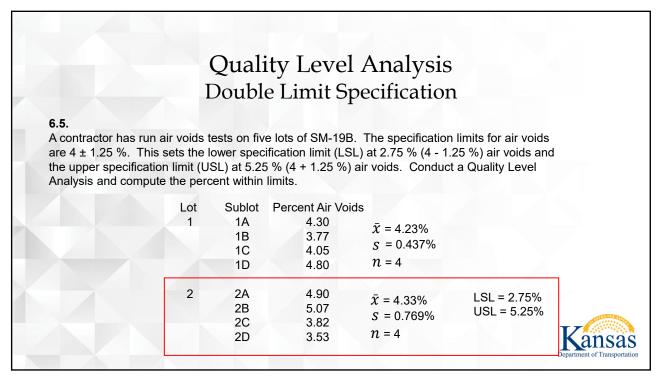
							Ar n L		ysi its	s					
$Q_L = -0.55$					Table	Var	iability U	Inknown	Percent V n Proced n Metho	ure	imits				
n = 4	Quality Index				Po	rcont Wit	hin Limi	ts for Sel	lected Sa	mple Siz	95				
Enter Table 2 with:	Q _U or Q _L		<u>N=4</u>	<u>N=5</u>	<u>N=6</u>	<u>N=7</u>	<u>N=8</u>	<u>N=9</u>	<u>N=10</u>	<u>N=15</u>	<u>N=20</u>	<u>N=30</u>	<u>N=50</u>	<u>N=100</u>	
$Q_L = 0.55$	0.45 0.46 0.47	62.74 63.04 63.34	65.00 65.33 65.67	65.84 66.19 66.53	66.27 66.62 66.96	66.51 66.87 67.22	66.67 67.03 67.38	66.79 67.14 67.49	66.87 67.22 67.58	67.08 67.43 67.79	67.16 67.52 67.88	67.24 67.60 67.96	67.29 67.65 68.01		
	0.48 0.49	63.65 63.95	66.00 66.33	66.88 67.22	67.31 67.66	67.57 67.92	67.73 68.08	67.85 68.20	67.93 68.28	68.15 68.50	68.23 68.59	68.31 68.67	68.37 68.72	68.40 68.76	
$PWL_{L} = 68.33$	0.50 0.51 0.52	64.25 64.56 64.87	66.67 67.00 67.33	67.56 67.90 68.24	68.00 68.35 68.69	68.26 68.61 68.96	68.43 68.78 69.13	68.55 68.90 69.24	68.63 68.98 69.33	68.85 69.20 69.55	68.94 69.29 69.64	69.02 69.37 69.72	69.07 69.43 69.77	69.11 69.46 69.81	
	0.53 0.54	65.18 65.49	67.67 68,00	68.58 68.92	69.04 69.38	69.30 69.64	69.47 69.82	69.59 69.93	69.68 70.02	69.90 70.24	69.99 70.33	70.07 70.41	70.12 70.47	70.51	
$PWL_L = 100 - 68.33$	0.55 0.56 0.57	65.80 66.12 66.43	68.33 68.67 69.00	69.26 69.60 69.94	69.72 70.06 70.40	69.99 70.33 70.67	70.16 70.50 70.84	70.28 70.62 70.96	70.36 70.71 71.05	70.59 70.93 71.27	70.68 71.02 71.36	70.76 71.10 71.44	70.81 71.15 71.49	70.85 71.19 71.53	
$PWL_L = 31.67$	0.58	66.75 67.07	69.33 69.67	70.27 70.61	70.74 71.07	71.01 71.34	71.18 71.52	71.30 71.64	71.39 71.72	71.61 71.95	71.70 72.04	71.78 72.11	71.43 71.83 72.17	71.87 72.21	ST.STRA
														Ka	n of Tr

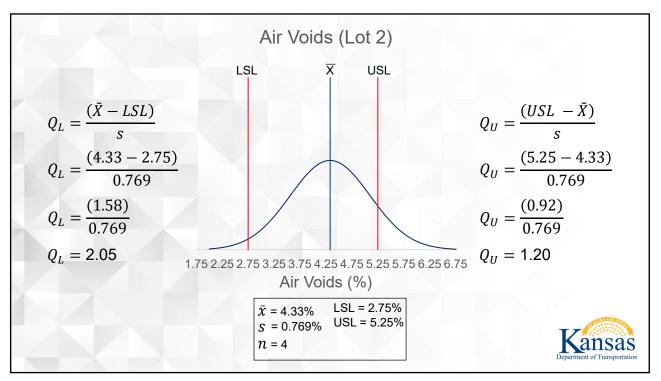

Quality Level Analysis Double Limit Specification

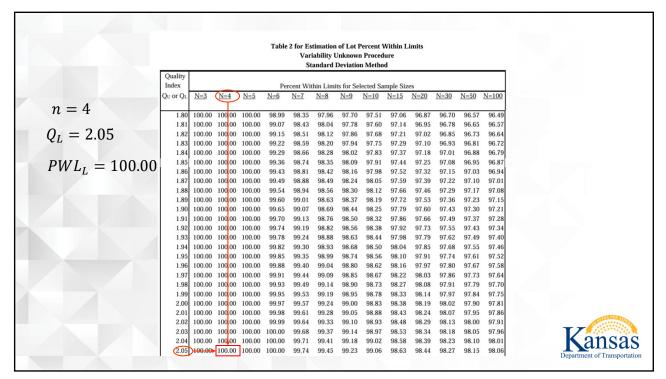

6.5.

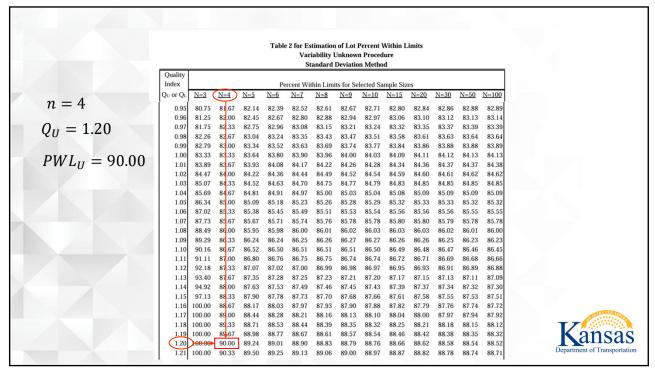
A contractor has run air voids tests on five lots of SM-19B. The specification limits for air voids are 4 ± 1.25 %. This sets the lower specification limit (LSL) at 2.75 % (4 - 1.25 %) air voids and the upper specification limit (USL) at 5.25 % (4 + 1.25 %) air voids. Conduct a Quality Level Analysis and compute the percent within limits.

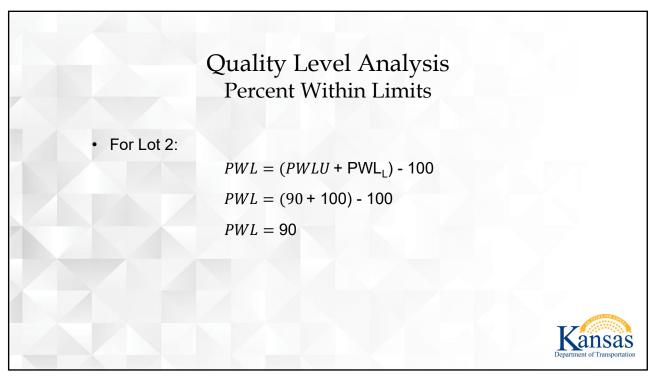

Lot 1	Sublot 1A 1B 1C 1D	Percent Air Voids 4.30 3.77 4.05 4.80	$\bar{x} = 4.23\%$ s = 0.437% n = 4	LSL = 2.75% USL = 5.25%	
2	2A 2B 2C	4.90 5.07 3.82			A CONTRACTOR OF CONTRACTOR
	20 2D	3.53			Kansa Department of Transpor

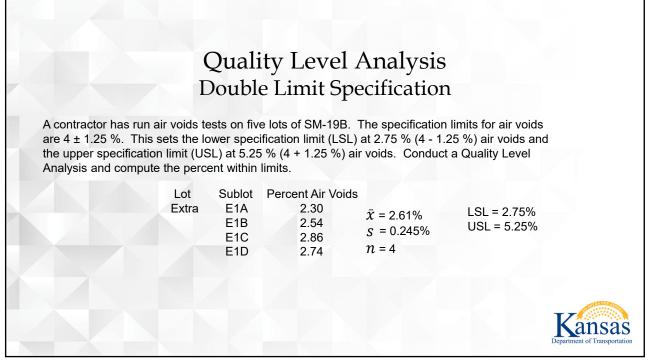

17

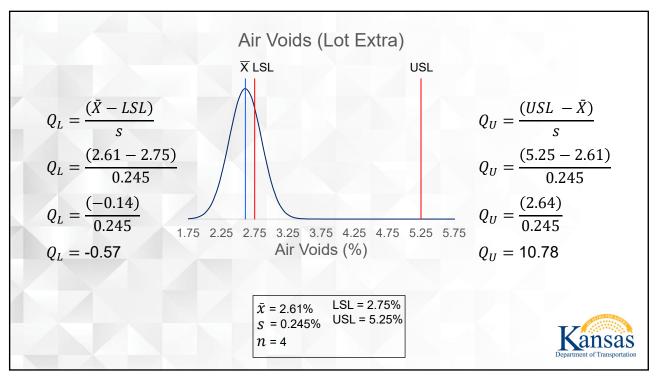


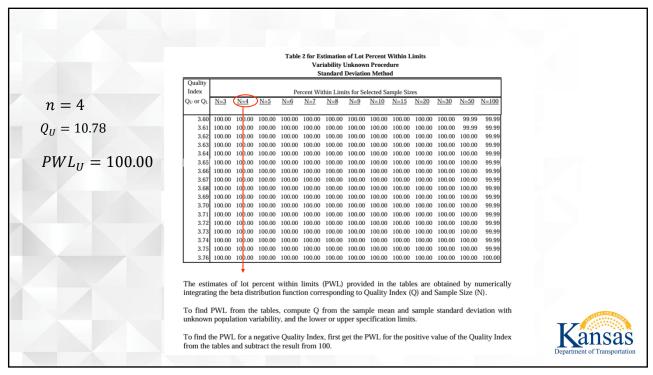


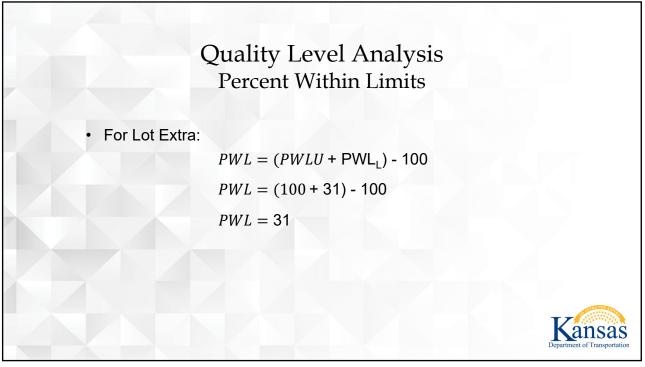

								57						6	
					Table	Var	timation iability U andard I	Inknown	Proced	ure	imits				
n = 4	Quality Index QU or QL	<u>N=3</u>	<u>N=4</u>	<u>N=5</u>	Per <u>N=6</u>	rcent Wit	hin Limi <u>N=8</u>	ts for Sel <u>N=9</u>	ected Sa <u>N=10</u>	mple Siz <u>N=15</u>	es <u>N=20</u>	<u>N=30</u>	<u>N=50</u>	<u>N=100</u>	
$Q_U = 2.33$	2.25 2.26			100.00 100.00	100.00 100.00	100.00 100.00	99.91 99.92	99.79 99.80	99.68 99.70	99.34 99.37	99.18 99.21	99.04 99.07	98.93 98.96	98.85 98.88	
$PWL_U = 100.00$	2.27 2.28 2.29	100.00	100.00	100.00 100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	99.93 99.94 99.95	99.82 99.83 99.85	99.71 99.73 99.75	99.39 99.42 99.44	99.24 99.26 99.29	99.10 99.12 99.15	98.99 99.02 99.05	98.91 98.94 98.97	
	2.30 2.31 2.32	100.00	100.00 100.00 100.00	100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	99.96 99.96 99.97	99.86 99.87 99.89	99.77 99.78 99.80	99.46 99.48 99.51	99.32 99.34 99.36	99.18 99.20 99.23	99.07 99.10 99.13	99.00 99.03 99.05	
	2.33 2.34 2.35	100.00	100.00		100.00 100.00 100.00	100.00 100.00 100.00	99.98 99.98 99.98	99.90 99.91 99.92	99.81 99.82 99.84	99.53 99.55 99.57	99.39 99.41 99.43	99.25 99.28 99.30	99.15 99.18 99.20	99.08 99.10 99.13	
	2.36 2.37 2.38	100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	99.99 99.99 99.99	99.92 99.93 99.94	99.85 99.86 99.87	99.58 99.60 99.62	99.45 99.47 99.49	99.32 99.34 99.37	99.22 99.25 99.27	99.15 99.18 99.20	
	2.39 2.40 2.41	100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	99.95 99.95 99.96	99.88 99.89 99.90	99.64 99.65 99.67	99.51 99.53 99.55	99.39 99.41 99.43	99.29 99.31 99.33	99.22 99.25 99.27	
	2.42 2.43 2.44	100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	100.00 100.00 100.00	99.96 99.97 99.97	99.91 99.92 99.92	99.68 99.70 99.71	99.56 99.58 99.60	99.44 99.46 99.48	99.35 99.37 99.39	99.29 99.31 99.33	V
	2.45				100.00	100.00	100.00	99.98	99.93	99.73	99.61	99.50	99.41	99.35	Department of Transportation

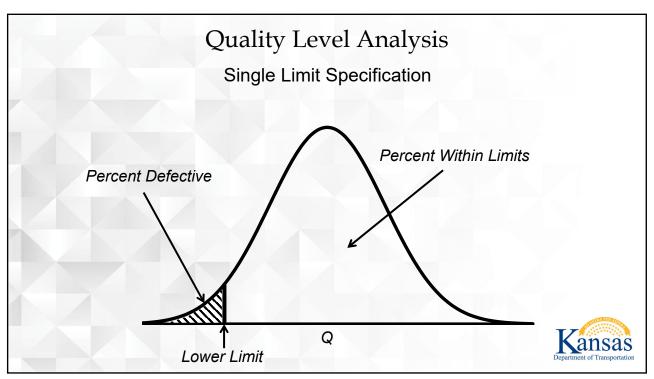




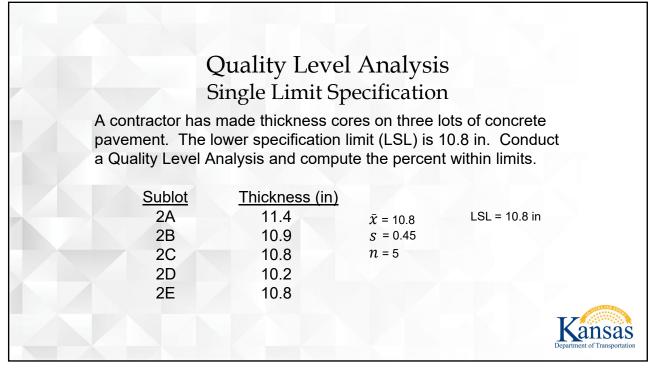


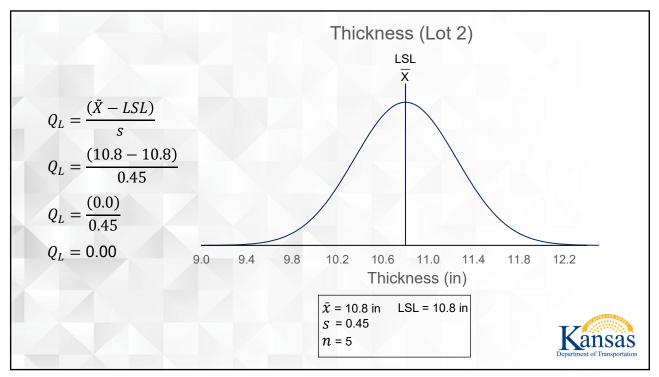




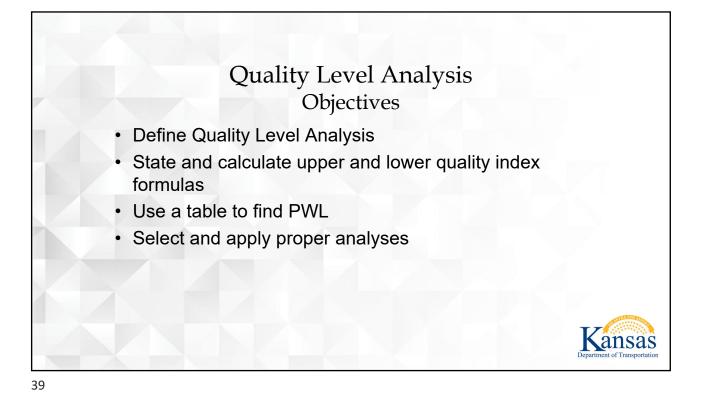


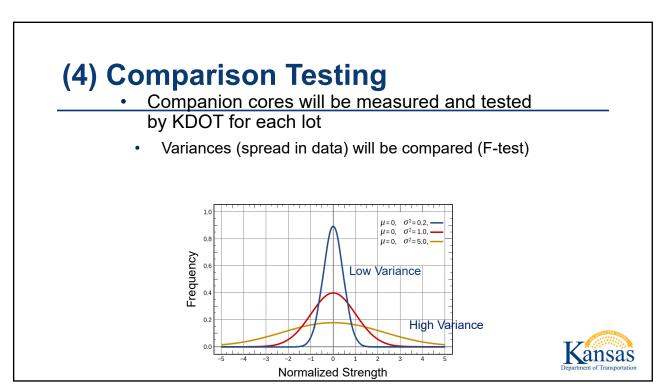

n = 4					Table	Vari	iability U	Jnknown	Percent V n Proced n Metho	ure	imits			
	Quality				5				10	1.0				
$Q_{L} = -0.57$	Index Ou or OL	N=3	N=4	N=5	Per N=6	N=7	hin Limi N=8	ts for Sel N=9	lected Sa N=10	mple Siz N=15	es N=20	N=30	N=50	N=100
	0.45	62.74	65,00	65.84	66.27	66.51	66.67	66.79	66.87	67.08	67.16	67.24	67.29	67.33
Go into table with:	0.46	63.04 63.34	65.33 65.67	66.19 66.53	66.62 66.96	66.87 67.22	67.03 67.38	67.14 67.49	67.22 67.58	67.43 67.79	67.52 67.88	67.60 67.96	67.65 68.01	67.69 68.05
$Q_L = 0.57$	0.47	63.65	66,00	66.88	67.31	67.57	67.73	67.85	67.93	68.15	68.23	68.31	68.37	68.40
$Q_L = 0.07$	0.49	63.95	66 <mark>.</mark> 33	67.22	67.66	67.92	68.08	68.20	68.28	68.50	68.59	68.67	68.72	
$PWL_{L} = 69.00$	0.50	64.25	66 <mark>.</mark> 67	67.56	68.00	68.26	68.43	68.55	68.63	68.85	68.94	69.02	69.07	69.11
$I V L_L = 09.00$	0.51 0.52	64.56 64.87	67.00 67.33	67.90 68.24	68.35 68.69	68.61 68.96	68.78 69.13	68.90 69.24	68.98 69.33	69.20 69.55	69.29 69.64	69.37 69.72	69.43 69.77	69.46 69.81
for	0.53	65.18	67.67	68.58	69.04	69.30	69.47	69.59	69.68	69.90	69.99	70.07	70.12	70.16
	0.54	65.49	68 <mark>.</mark> 00	68.92	69.38	69.64	69.82	69.93	70.02	70.24	70.33	70.41	70.47	70.51
$Q_L = 0.57$	0.55	65.80	68.33	69.26	69.72	69.99	70.16	70.28	70.36	70.59	70.68	70.76	70.81	70.85
	0.56	66.12	68,67 69.00	69.60 69.94	70.06 70.40	70.33 70.67	70.50 70.84	70.62 70.96	70.71 71.05	70.93 71.27	71.02 71.36	71.10 71.44	71.15 71.49	71.19 71.53
however,	0.58	66.75	69.33	70.27	70.74	71.01	71.18	71.30	71.39	71.61	71.70	71.78	71.83	
$Q_L = -0.57$	0.59	67.07	69.67	70.61	71.07	71.34	71.52	71.64	71.72	71.95	72.04	72.11	72.17	72.21
$Q_L = 0.57$	0.60	67.39	70.00 70.33	70.95 71.28	71.41 71.75	71.68 72.02	71.85 72.19	71.97 72.31	72.06 72.40	72.28 72.61	72.37 72.70	72.45 72.78	72.50 72.84	72.54 72.87
SO,	0.61	67.72 68.04	70.33	71.28	72.08	72.02	72.19	72.31	72.40	72.95	73.04	73.11	72.84	73.20
	0.63	68.37	71.00	71.95	72.41	72.68	72.85	72.97	73.06	73.28	73.37	73.44	73.50	73.53
$PWL_L = 100.00 - 69.00$	0.64	68.70	71.33	72.28	72.74	73.01	73.18	73.30	73.39	73.61	73.69	73.77	73.82	73.86
24.00	0.65	69.03	71.67 72.00	72.61 72.94	73.08	73.34 73.67	73.51	73.63 73.96	73.72	73.93	74.02 74.34	74.10 74.42	74.15 74.47	74.18
$PWL_L = 31.00$	0.66	69.37 69.70	72.00	72.94	73.40 73.73	73.67	73.84 74.17	73.96	74.04 74.37	74.26 74.58	74.34 74.67	74.42 74.74	74.47	74.51 74.83
	0.68	70.04	72.67	73.60	74.06	74.32	74.49	74.61	74.69	74.90	74.99	75.06	75.11	75.14
	0.69	70.39	73.00	73.93	74.39	74.65	74.81	74.93	75.01	75.22	75.30	75.38	75.43	75.46

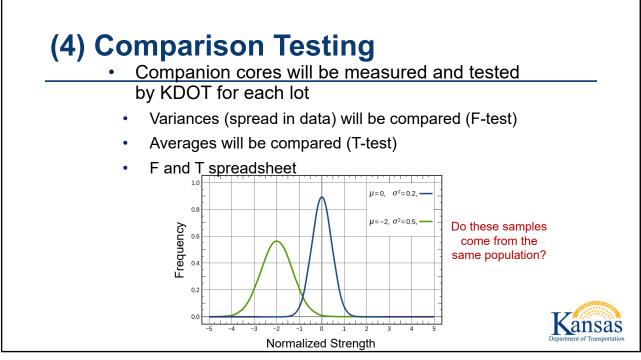


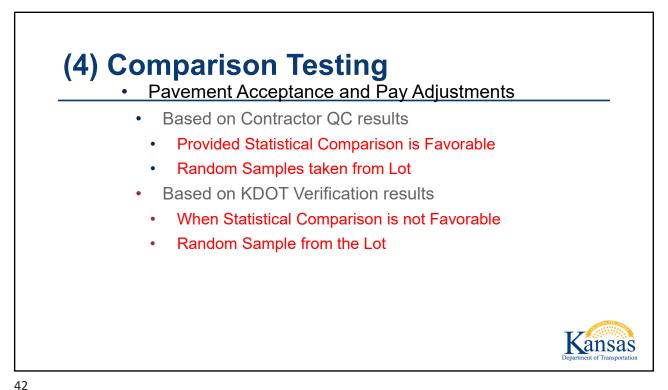


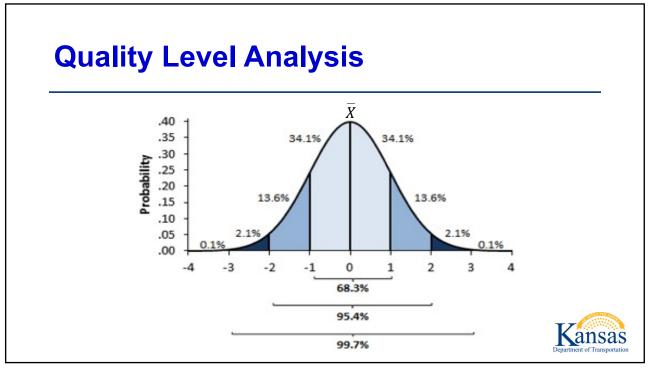
	Quality Level			
	Single Limit Sp	ecification	l	
pavement. The	is made thickness cor e lower specification li Analysis and comput	mit (LSL) is	10.8 in. Conduct	
Sublot 1A 1B 1C 1D 1E	<u>Thickness (in)</u> 10.9 10.8 10.9 11.0 11.0 11.0	$ \bar{x} = 10.9 s = 0.08 n = 5 $	LSL = 10.8 in	
			K	ansas ment of Transportation

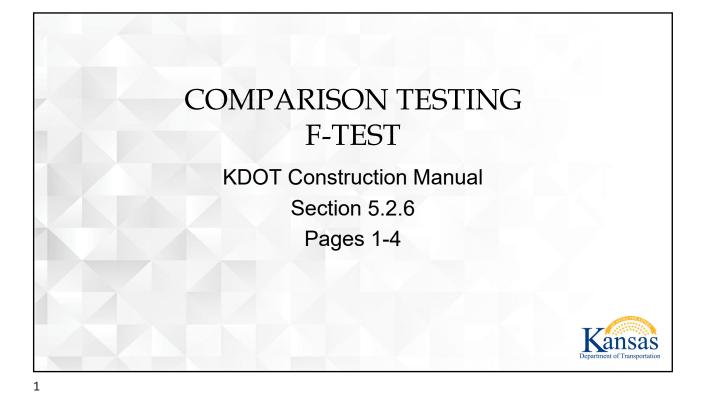


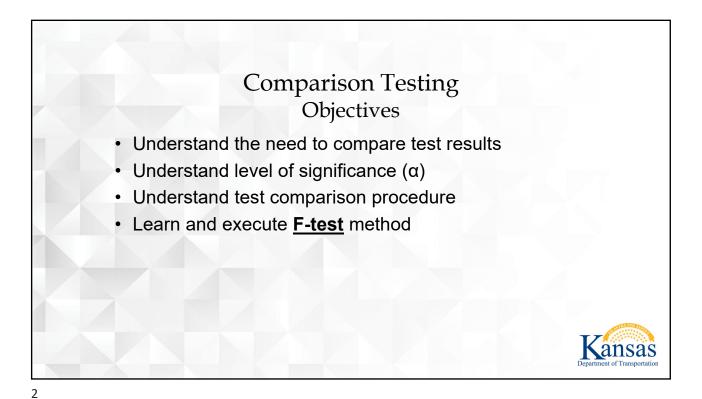

				Table		iability U	Unknow	Percent V n Proced n Metho	lure	limits					
Quality														n = 5	
Index					rcent Wit										
Q _U or Q _L	<u>N=3</u>	<u>N=4</u>	<u>N=5</u>	<u>N=6</u>	<u>N=7</u>	<u>N=8</u>	<u>N=9</u>	<u>N=10</u>	<u>N=15</u>	<u>N=20</u>	<u>N=30</u>	<u>N=50</u>	<u>N=100</u>	$Q_L = 1.25$	
1.00	83.33	83.33	83.64	83.80	83.90	83.96	84.00	84.03	84.09	84.11	84.12	84.13	84.13	•1	
1.01	83.89	83.67	83.93	84.08	84.17	84.22	84.26	84.28	84.34	84.36	84.37	84.37	84.38		
1.02	84.47	84.00	84.22	84.36	84.44	84.49	84.52	84.54	84.59	84.60	84.61	84.62	84.62	DIAZI = 0.0	E 4
1.03	85.07	84.33	84.52	84.63	84.70	84.75	84.77	84.79	84.83	84.85	84.85	84.85	84.85	$PWL_L = 90$.34
1.04	85.69	84.67	84.81	84.91	84.97	85.00	85.03	85.04	85.08	85.09	85.09	85.09	85.09		
1.05	86.34	85.00	85.09	85.18	85.23	85.26	85.28	85.29	85.32	85.33	85.33	85.32	85.32		
1.00	5 87.02	85.33	85.38	85.45	85.49	85.51	85.53	85.54	85.56	85.56	85.56	85.55	85.55		
1.07	87.73	85.67	85.67	85.71	85.74	85.76	85.78	85.78	85.80	85.80	85.79	85.78	85.78		
1.08		86.00	85.95	85.98	86.00	86.01	86.02	86.03	86.03	86.03	86.02	86.01	86.00		
1.09		86.33	86.24	86.24	86.25	86.26	86.27	86.27	86.26	86.26	86.25	86.23	86.23		
1.10		86.67	86.52	86.50	86.51	86.51	86.51	86.50	86.49	86.48	86.47	86.46	86.45		
1.11		87.00	86.80	86.76	86.75	86.75	86.74	86.74	86.72	86.71	86.69	86.68	86.66		
1.12		87.33	87.07	87.02	87.00	86.99	86.98	86.97	86.95	86.93	86.91	86.89	86.88		
1.13		87.67	87.35	87.28	87.25	87.23	87.21	87.20	87.17	87.15	87.13	87.11	87.09		
1.14		88.00 88.33	87.63 87.90	87.53 87.78	87.49 87.73	87.46 87.70	87.45 87.68	87.43 87.66	87.39 87.61	87.37 87.58	87.34 87.55	87.32 87.53	87.30 87.51		
1.15		88.67	88.17	87.78	87.75	87.93	87.08	87.88	87.82	87.78	87.76	87.55	87.51		
1.16		89.00	88.44	88.28	87.97	87.95	88.13	88.10	88.04	88.00	87.97	87.94	87.92		
1.18		89.33	88.71	88.53	88.44	88.39	88.35	88.32	88.25	88.21	88.18	88.15	88.12		
1.19		89.67	88.98	88.77	88.67	88.61	88.57	88.54	88.46		88.38	88.35	88.32		
1.20		90.00	89.24	89.01	88.90	88.83	88.79	88.76	88.66	88.62	88.58	88.54	88.52		
1.21		90.33	89.50	89.25	89.13	89.06	89.00	88.97	88.87	88.82	88.78	88.74	88.71		
1.22		90.67	89.77	89.49	89.35	89.27	89.22	89.18		89.02	88.97	88.93	88.91		STRA PER A
1.23	1	91.00	90.03	89.72	89.58	89.49	89.43	89.39	89.27	89.22	89.16	89.12	89.09	TZ	10
1.24	100.00	91.33	90.28	89.96	89.80	89.70	89.64	89.59	89.47	89.41	89.36	89.31	89.28	K	inc
(1.25	100.00	91.67	90.54	90.19	90.02	89.91	89.85	89.79	89.66	89.60	89.54	89.50	89.47		11120
1.20	5 100.00	92.00	90.79	90.42	90.23	90.12	90.05	90.00	89.85	89.79	89.73	89.68	89.65	Departmen	nt of Transpo

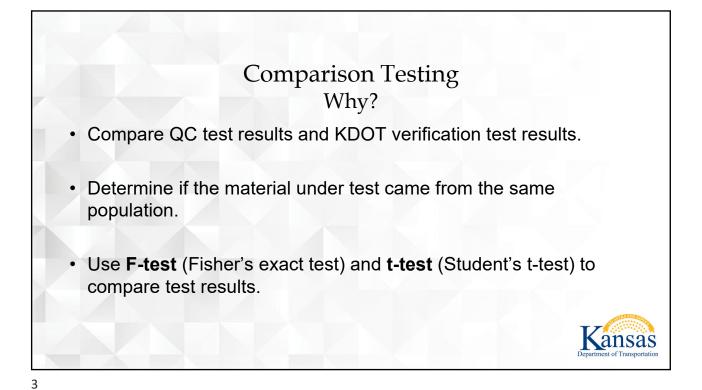


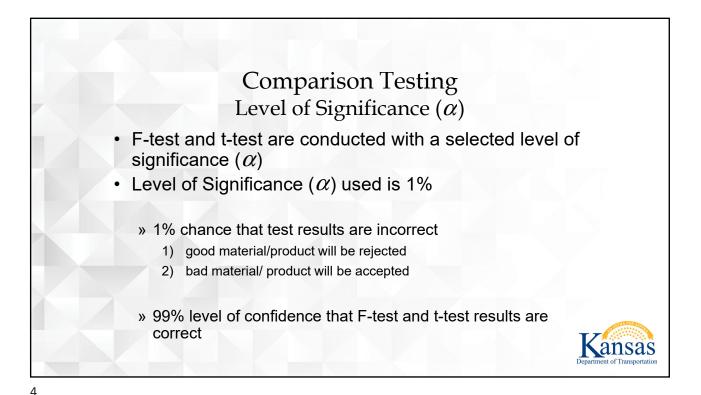


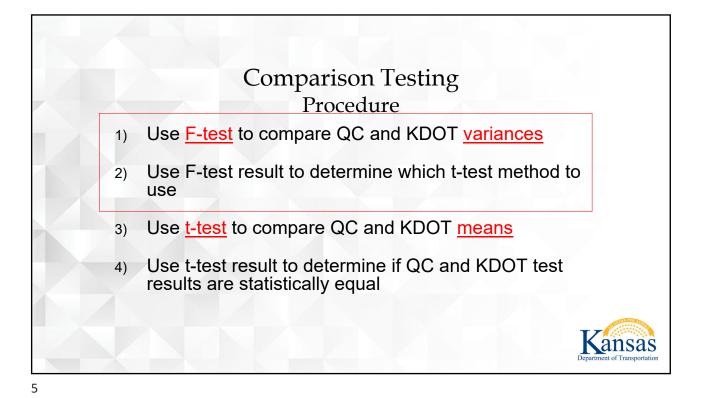

2				Table	Vari	iability U	Inknow	Percent V n Proced n Metho		imits				
Quality														n = 5
Index	NL 2	NA	NL F						mple Siz		NL 20	N 50	N. 100	
QU or QL	<u>N=3</u>	<u>N=4</u>	<u>N=5</u>	<u>N=6</u>	<u>N=7</u>	<u>N=8</u>	<u>N=9</u>	<u>N=10</u>	<u>N=15</u>	<u>N=20</u>	<u>N=30</u>	<u>N=50</u>	N=100	$Q_L = 0.00$
0.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	$Q_L = 0.00$
0.01	50.28	50.33	50.36	50.37	50.37	50.38	50.38	50.38	50.39	50.39	50.40	50.40	50.40	
0.02	50.55	50.67	50.71	50.73	50.75	50.76	50.76	50.77	50.78	50.79	50.79	50.79	50.80	
0.03	50.83	51.00	51.07	51.10	51.12	51.14	51.15	51.15	51.17	51.18	51.19	51.19	51.19	$PWL_{L} = 50.00$
0.04	51.10	51.33	51.42	51.47	51.50	51.51	51.53	51.54	51.56	51.57	51.58	51.59	51.59	$I V L_{L} = 30.00$
0.05	51.38	51.67	51.78	51.84	51.87	51.89	51.91	51.92	51.95	51.96	51.98	51.98	51.99	
0.06	51.65	52.00	52.13	52.20	52.24	52.27	52.29	52.30	52.34	52.36	52.37	52.38	52.39	
0.07	51.93	52.33	52.49	52.57 52.94	52.62 52.99	52.65	52.67 53.05	52.69	52.73 53.12	52.75 53.14	52.76 53.16	52.78 53.17	52.78	
0.08	52.21 52.48	52.67 53.00	52.85 53.20	53.30	53.37	53.03 53.41	53.43	53.07 53.46	53.12	53.53	53.10	53.57	53.18 53.58	
0.09	52.46	53.33	53.56	53.67	53.74	53.78	53.82	53.40	53.90	53.92	53.95	53.96	53.97	
0.11	53.04	53.67	53.91	54.04	54.11	54.16	54.20	54.22	54.29	54.31	54.34	54.36	54.37	
0.12	53.31	54.00	54.27	54.40	54.49	54.54	54.58	54.60	54.67	54.70	54.73	54.75	54.76	
0.13	53.59	54.33	54.62	54.77	54.86	54.92	54.96	54.99	55.06	55.09	55.12	55.14	55.16	
0.14	53.87	54.67	54.98	55.14	55.23	55.29	55.34	55.37	55.45	55.48	55.52	55.54	55.55	
0.15	54.15	55.00	55.33	55.50	55.60	55.67	55.71	55.75	55.84	55.87	55.91	55.93	55.95	
0.16	54.42	55.33	55.69	55.87	55.97	56.04	56.09	56.13	56.22	56.26	56.30	56.32	56.34	
0.17	54.70	55.67	56.04	56.23	56.35	56.42	56.47	56.51	56.61	56.65	56.69	56.71	56.73	
0.18	54.98	56.00	56.40	56.60	56.72	56.79	56.85	56.89	56.99	57.04	57.08	57.11	57.12	
0.19	55.26	56.33 56.67	56.75 57.10	56.96 57.32	57.09 57.46	57.17 57.54	57.23 57.60	57.27 57.65	57.38 57.76	57.43 57.81	57.47 57.85	57.50 57.89	57.52 57.91	
0.20	55.54 55.82	57.00	57.46	57.69	57.83	57.92	57.98	58.03	58.15	57.81	57.85	57.89	57.91	
0.21	56.10	57.33	57.81	58.05	58.20	58.29	58.36	58.40	58.53	58.58	58.63	58.66	58.69	
0.23	56.38	57.67	58.16	58.41	58.56	58.66	58.73	58.78	58.91	58.97	59.01	59.05	59.07	
0.24	56.66	58.00	58.52	58.78	58.93	59.03	59.11	59.16	59.29	59.35	59.40	59.44	59.46	A STATISTICS
0.25	56.95	58.33	58.87	59.14	59.30	59.41	59.48	59.53	59.67	59.73	59.78	59.82	59.85	
0.26	57.23	58.67	59.22	59.50	59.67	59.78	59.85	59.91	60.05	60.11	60.17	60.21	60.23	Kansas
0.27	57.51	59.00	59.57	59.86	60.03	60.15	60.23	60.28	60.43	60.49	60.55	60.59	60.62	INalisas
0.28	57.80	59.33	59.92	60.22	60.40	60.52	60.60	60.66	60.81	60.87	60.93	60.97	61.00	Department of Transportation
0.29	58.08	59.67	60.28	60.58	60.77	60.89	60.97	61.03	61.19	61.25	61.31	61.35	61.38	

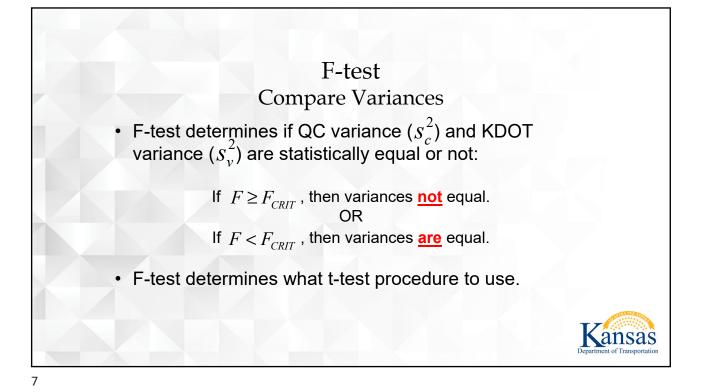


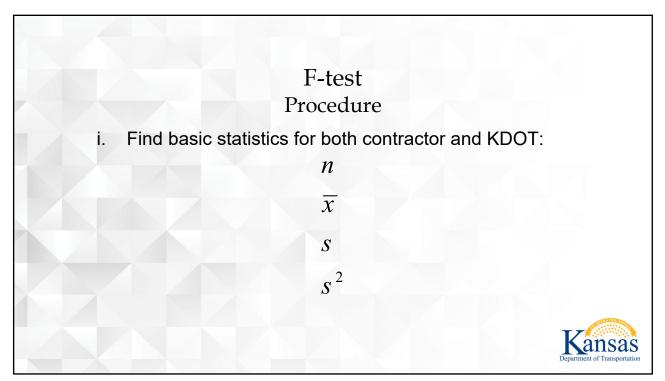


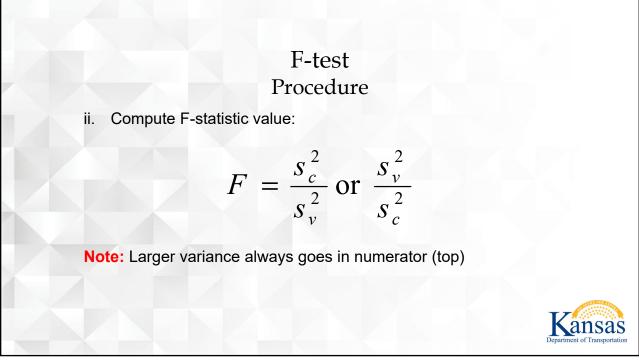


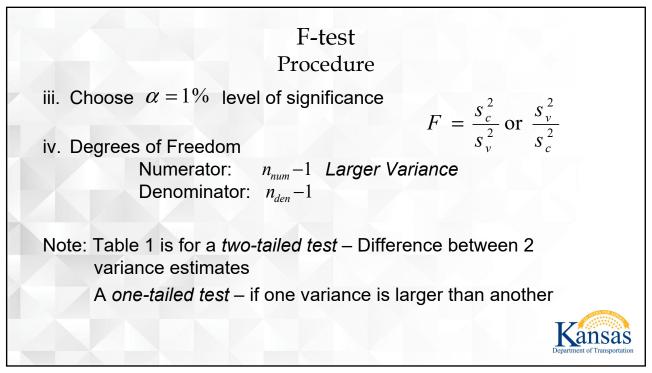


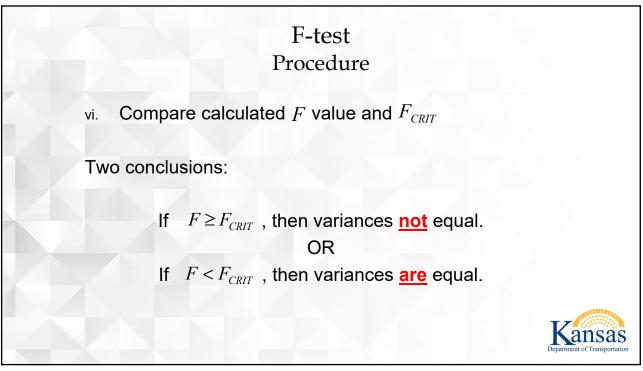


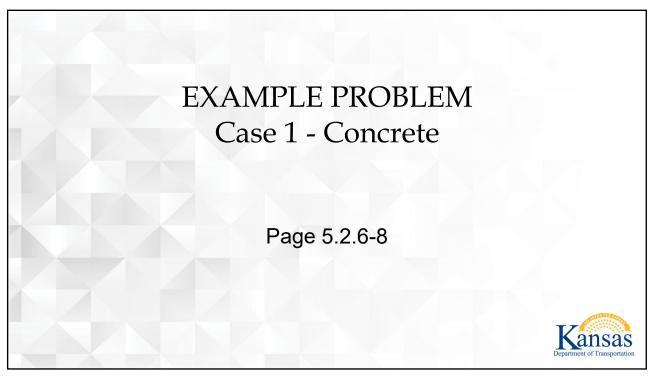


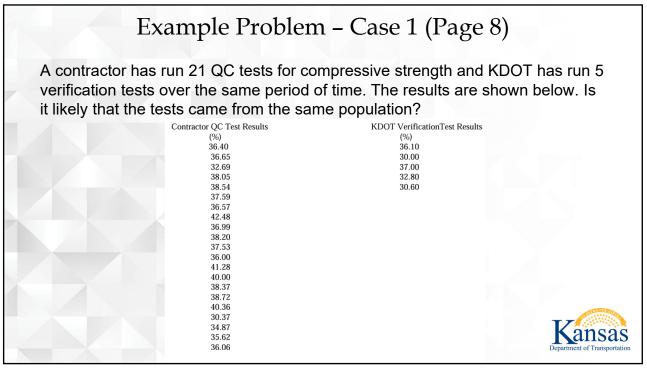




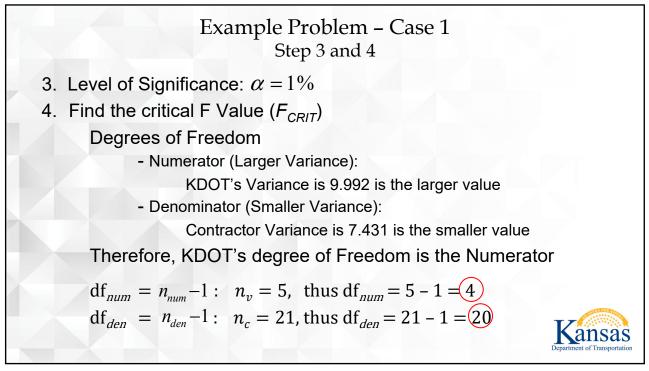


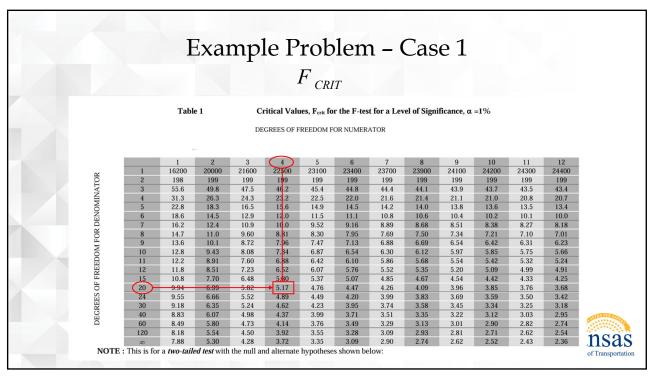


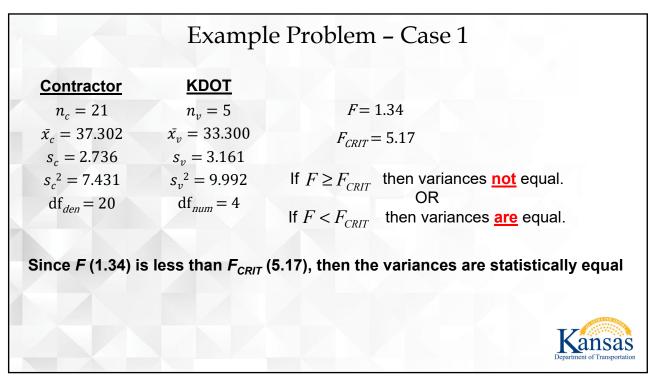


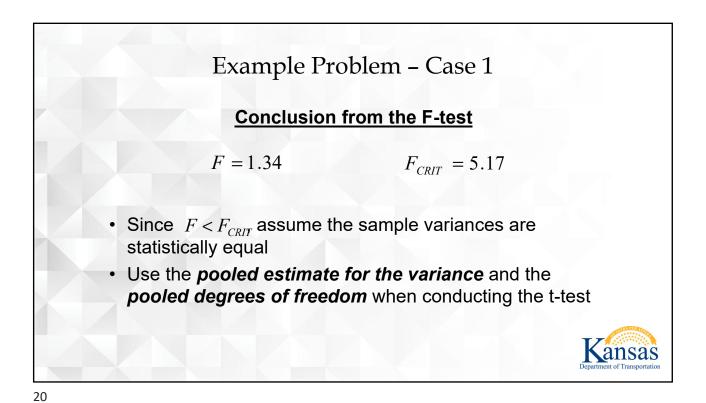


				F-	tes	t Pr	oceo	dure	ć				
V.	Find	F_{CP}	т İ	n Ta	ble '	1 (Pa	ades	3-4)				
		- CK	-						/				
		Tabl	e 1	C	ritical Val	ues, F _{crit} fo	r the F-tes	t for a Lev	el of Signi	ficance, a	=1%		
				DE	GREES OF I	FREEDOM F	OR NUMER	ATOR					
		1	2	3	4	5	6	7	8	9	10	11	12
r.	1	16200	20000	21600	22500	23100	23400	23700	23900	24100	24200	24300	24400
õ	2	198	199	199	199	199	199	199	199	199	199	199	199
TA1	3	55.6	49.8	47.5	46.2	45.4	44.8	44.4	44.1	43.9	43.7	43.5	43.4
ų.	4	31.3	26.3	24.3	23.2	22.5	22.0	21.6	21.4	21.1	21.0	20.8	20.7
NO	5	22.8	18.3	16.5	15.6	14.9	14.5	14.2	14.0	13.8	13.6	13.5	13.4
EN	6	18.6	14.5	12.9	12.0	11.5	11.1	10.8	10.6	10.4	10.2	10.1	10.0
2	7	16.2	12.4	10.9	10.0	9.52	9.16	8.89	8.68	8.51	8.38	8.27	8.18
IO.	8	14.7	11.0	9.60	8.81	8.30	7.95	7.69	7.50	7.34	7.21	7.10	7.01
N N	9	13.6	10.1	8.72	7.96	7.47	7.13	6.88	6.69	6.54	6.42	6.31	6.23
0	10	12.8	9.43 8.91	8.08 7.60	7.34 6.88	6.87 6.42	6.54 6.10	6.30 5.86	6.12 5.68	5.97 5.54	5.85 5.42	5.75 5.32	5.66 5.24
EE	11	12.2	8.91	7.60	6.88	6.42	6.10 5.76	5.86	5.68	5.54	5.42	5.32	5.24
OF FREEDOM FOR DENOMINATOR	12	11.8	7.70	6.48	5.80	5.37	5.07	4.85	4.67	4.54	4.42	4.99	4.91
OF 1	20	9.94	6.99	5.82	5.17	4.76	4.47	4.85	4.07	3.96	3.85	4.33	3.68
SC	20	9.55	6.66	5.52	4.89	4.49	4.47	3.99	3.83	3.69	3.59	3.50	3.42
DEGREES	30	9.18	6.35	5.24	4.62	4.23	3.95	3.74	3.58	3.45	3.34	3.25	3.18
GR	40	8.83	6.07	4.98	4.37	3.99	3.71	3.51	3.35	3.22	3.12	3.03	2.95
DE	60	8.49	5.80	4.73	4.14	3.76	3.49	3.29	3.13	3.01	2.90	2.82	2.74
	120	8.18	5.54	4.50	3.92	3.55	3.28	3.09	2.93	2.81	2.71	2.62	2.54
	20	7.88	5.30	4.28	3.72	3.35	3.09	2.90	2.74	2.62	2.52	2.43	2.34
		or a <i>two-tail</i>								2.08	2.00		2.00

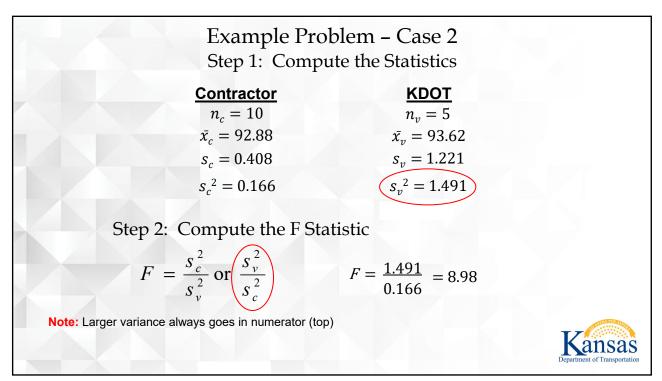

				D	EGREES OF	FREEDOM	FOR NUME	RATOR					
		15	20	24	30	40	50	60	100	120	200	500	œ
	1	24600	24800	24900	25000	25100	25200	25300	25300	25400	25400	25400	25500
	2	199	199	199	199	199	199	199	199	199	199	199	200
	3	43.1	42.8	42.69	42.5	42.3	42.2	42.1	42.0	42.0	41.9	41.9	41.8
	4	20.4	20.2	20.0	19.9	19.8	19.7	19.6	19.5	19.5	19.4	19.4	19.3
	5	13.1	12.9	12.8	12.7	12.5	12.5	12.4	12.3	12.3	12.2	12.2	12.1
	6	9.81	9.59	9.47	9.36	9.24	9.17	9.12	9.03	9.00	8.95	8.91	8.88
	7	7.97	7.75	7.65	7.53	7.42	7.35	7.31	7.22	7.19	7.15	7.10	7.08
	8	6.81	6.61	6.50	6.40	6.29	6.22	6.18	6.09	6.06	6.02	5.98	5.95
	9	6.03	5.83	5.73	5.62	5.52	5.45	5.41	5.32	5.30	5.26	5.21	5.19
	10	5.47	5.27	5.17	5.07	4.97	4.90	4.86	4.77	4.75	4.71	4.67	4.64
	11	5.05	4.86	4.76	4.65	4.55	4.49	4.45	4.36	4.34	4.29	4.25	4.23
	12	4.72	4.53	4.43	4.33	4.23	4.17	4.12	4.04	4.01	3.97	3.93	3.90
	15	4.07	3.88	3.79	3.69	3.59	3.52	3.48	3.39	3.37	3.33	3.29	3.26
	20	3.50	3.32	3.22	3.12	3.02	2.96	2.92	2.83	2.81	2.76	2.72	2.69
	24	3.25	3.06	2.97	2.87	2.77	2.70	2.66	2.57	2.55	2.50	2.46	2.43
	30	3.01	2.82	2.73	2.63	2.52	2.46	2.42	2.32	2.30	2.25	2.21	2.18
	40	2.78	2.60	2.50	2.40	2.3	2.23	2.18	2.09	2.06	2.01	1.96	1.93
	60	2.57	2.39	2.29	2.19	2.08	2.01	1.96	1.86	1.83	1.78	1.73	1.69
	120	2.37	2.19	2.09	1.98	1.87	1.80	1.75	1.64	1.61	1.54	1.48	1.43
	00	2.19	2.00	1.90	1.79	1.67	1.59	1.53	1.40	1.36	1.28	1.17	1.00
NOTE :	This is for	r a <i>two-tail</i> e	ed test with	the null an	d alternate	hypothese	s shown be	low:					
						$H_o: s^2$ $H_a: s^2$	2						

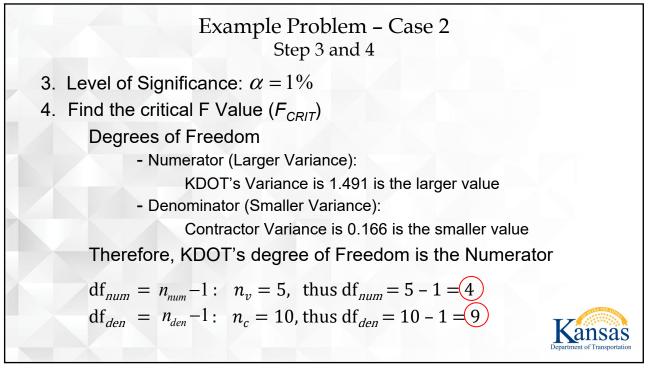


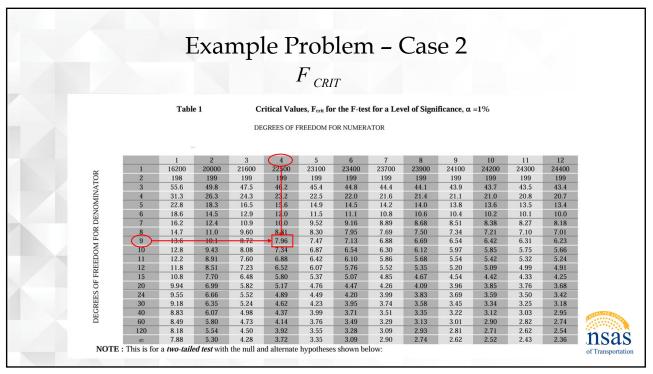


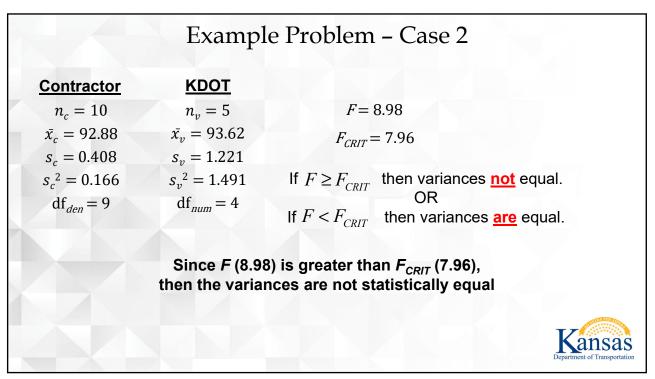


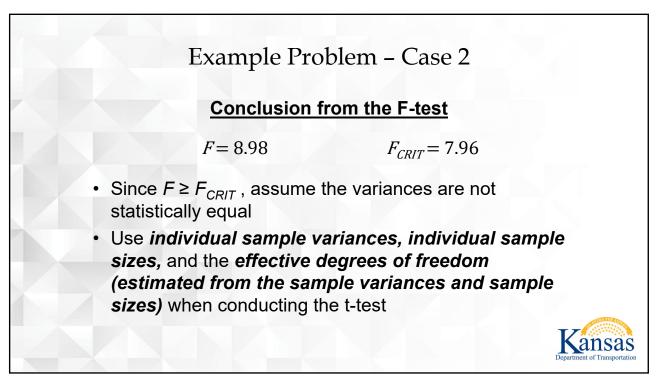
Example Problem – Case 1 Step 1: Compute the Statistics Contractor KDOT $n_{c} = 21$ $n_v = 5$ $\bar{x}_{c} = 37.302$ $\bar{x_v} = 33.300$ $s_c = 2.736$ $s_v = 3.161$ $s_c^2 = 7.431$ $s_v^2 = 9.992$ Step 2: Compute the F Statistic $F = \frac{s_c^2}{s_v^2} \operatorname{or} \left(\frac{s_v^2}{s_v^2} \right)$ $F = \frac{9.992}{7.431} = 1.34$ Note: Larger variance always goes in numerator (top) ansas

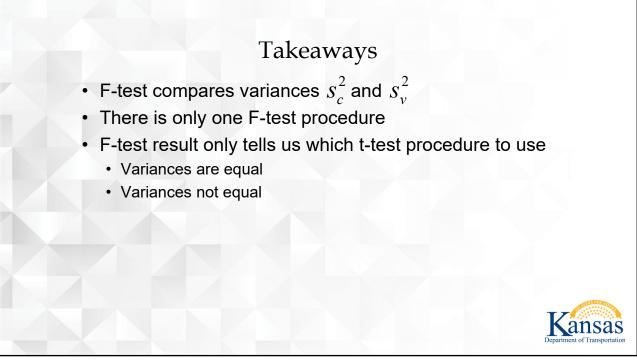


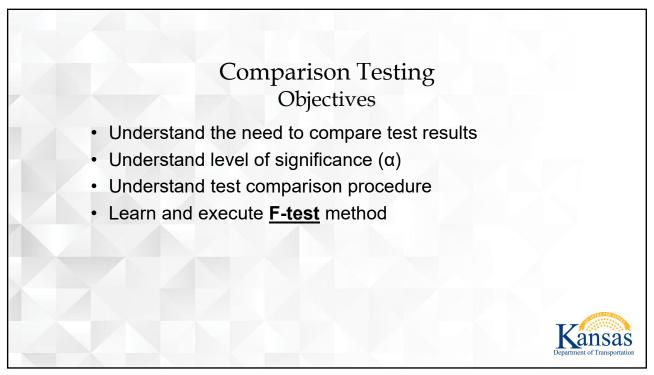


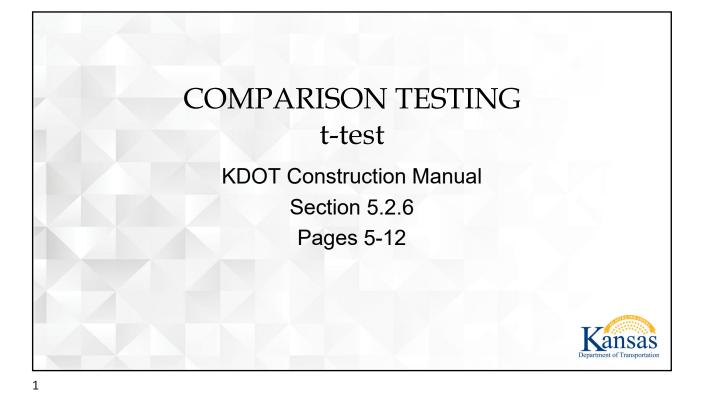


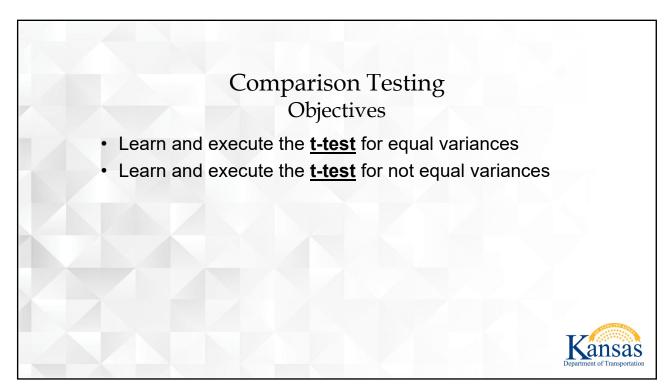


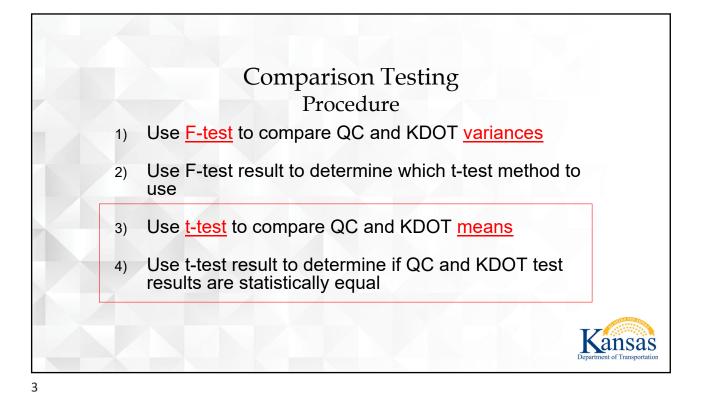

	Example Proble	m – Case 2 (Page 10)	
same pe	eriod of time for the asphalt p	KDOT has run 5 verification tests over the avement density (%G _{mm}). The results are came from the same population or lot?	e
	Contractor QC Test Results 93.0 92.4 92.9 93.6 92.9 92.9 92.4 93.4 92.9 92.9 92.4	KDOT Verification Test Results 95.5 93.3 94.1 92.5 92.7	Sas

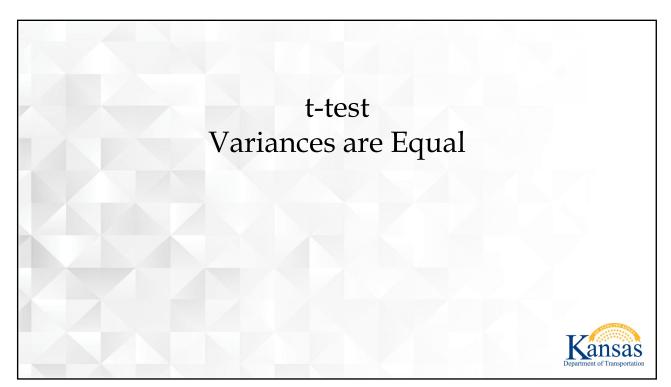


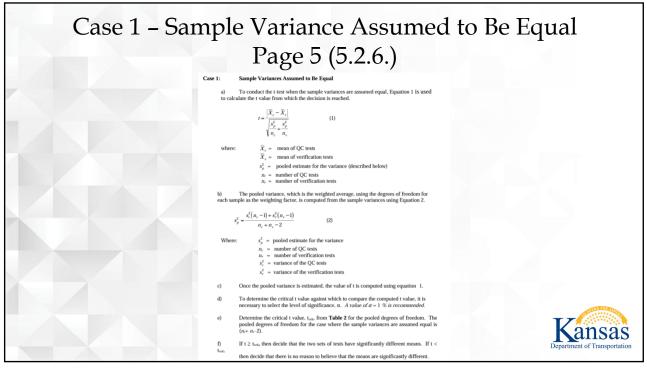


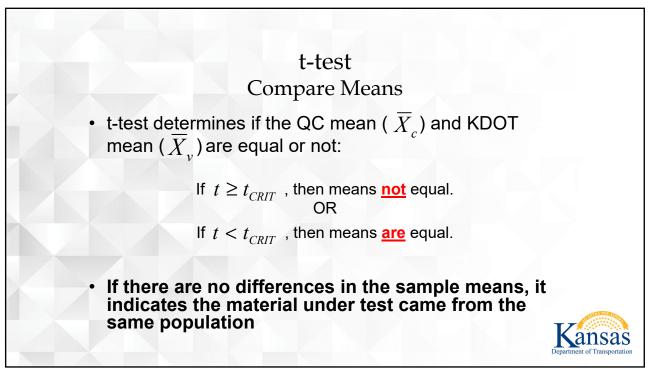


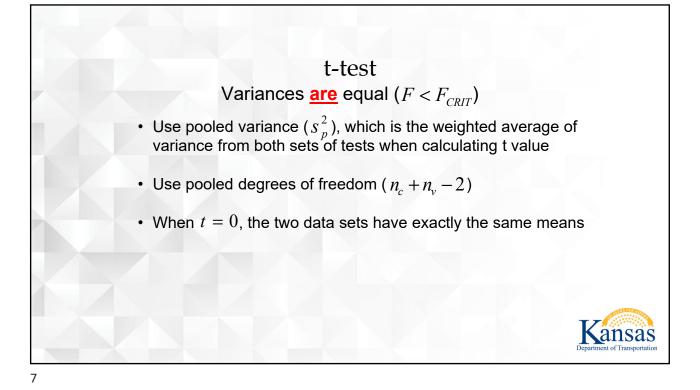


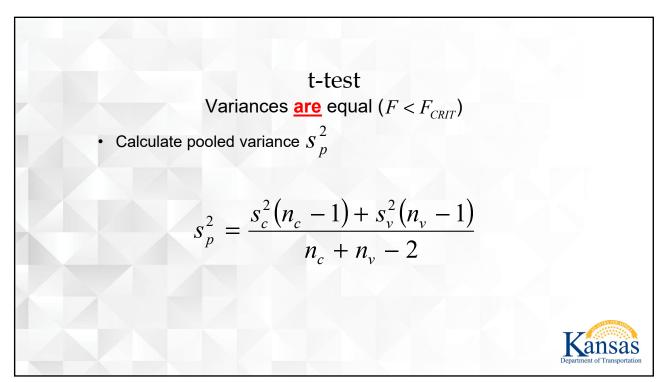


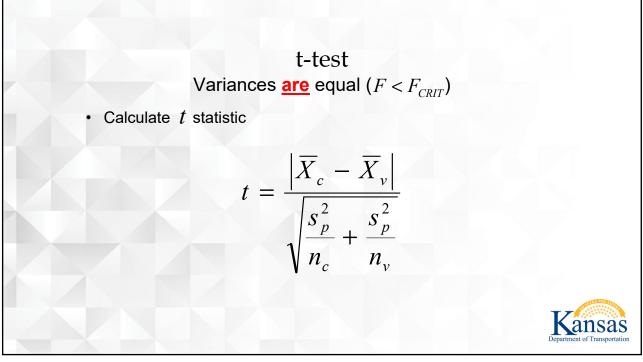


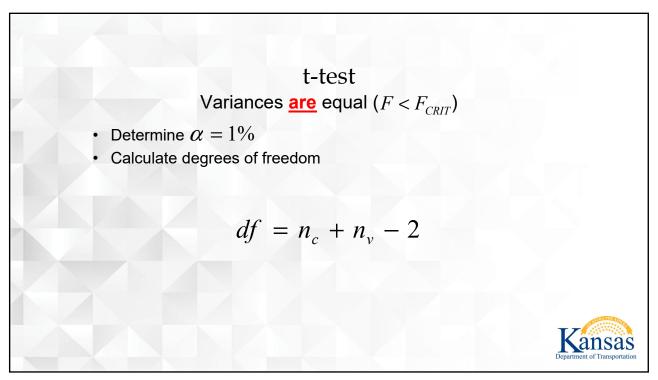


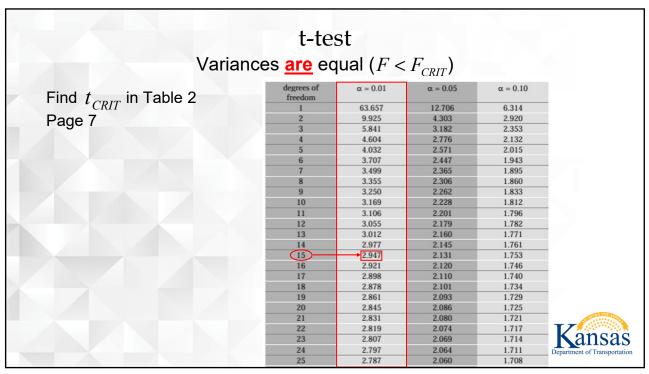


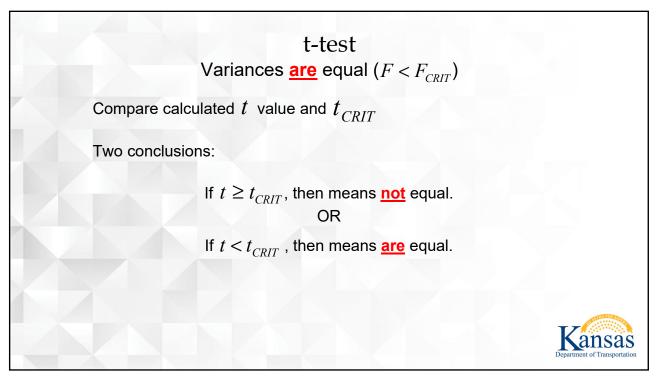


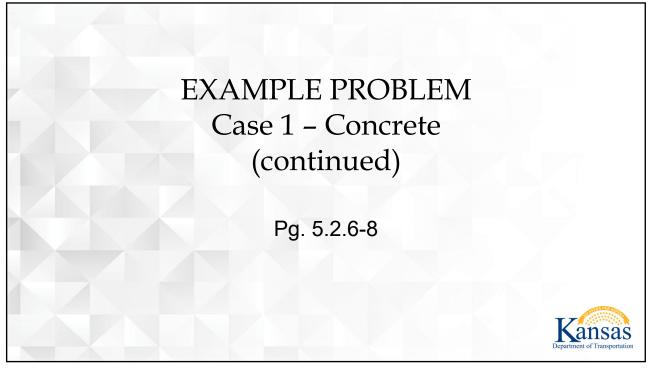


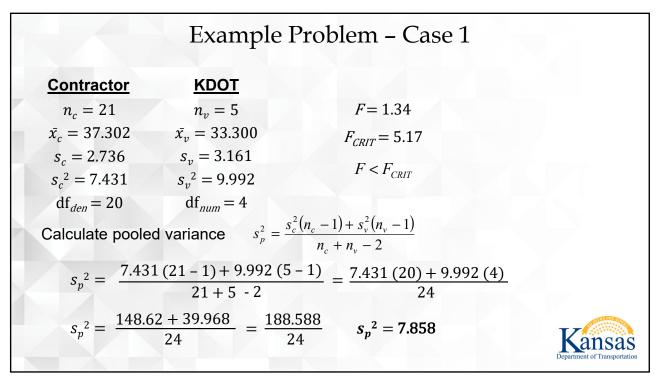


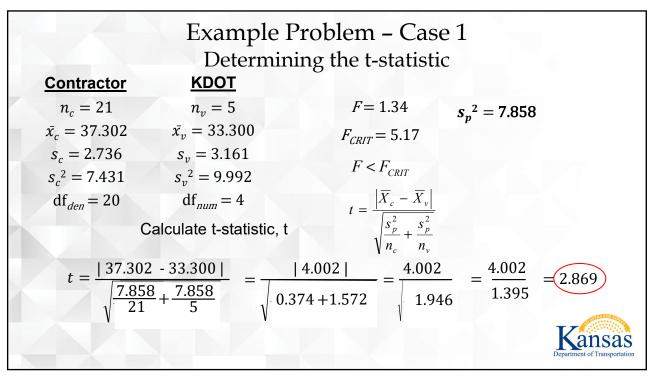


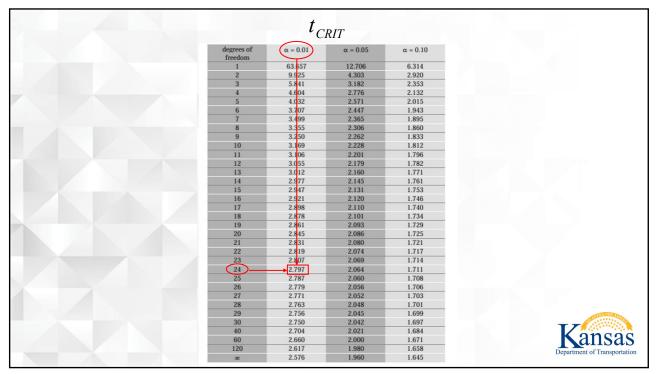


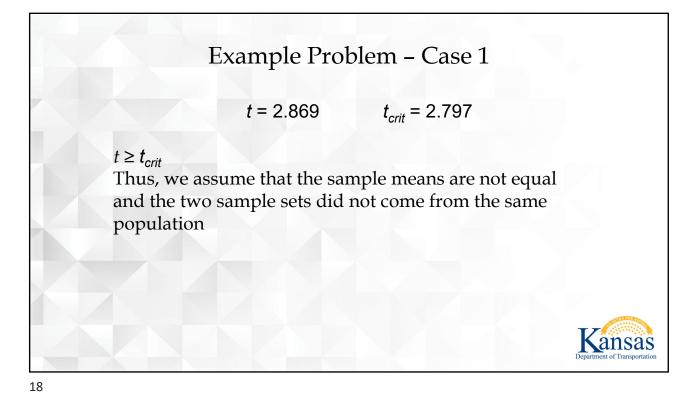


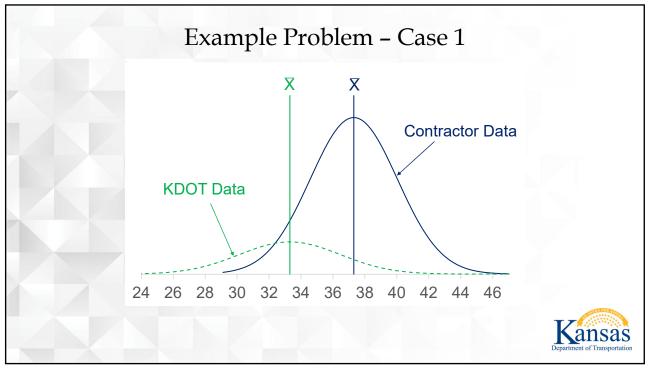


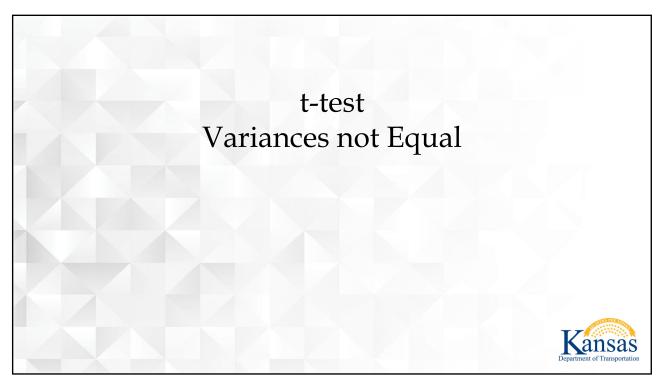


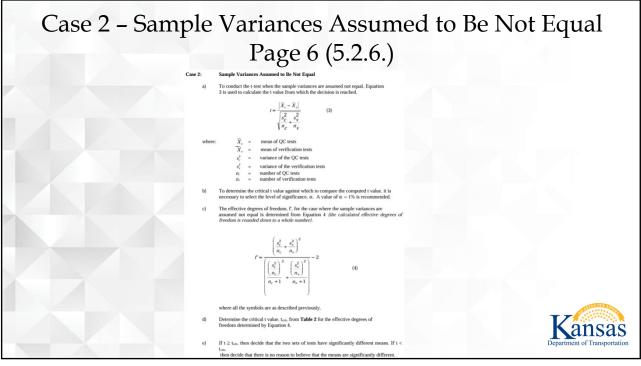


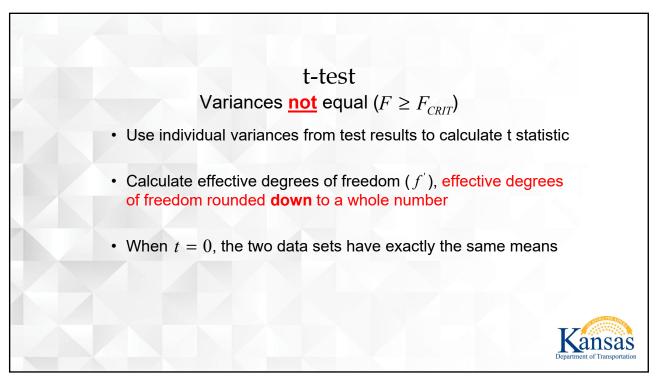


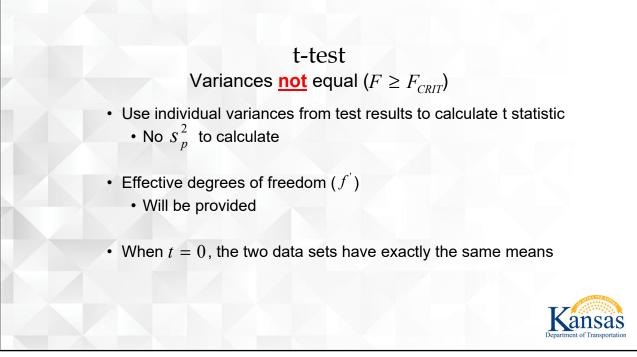


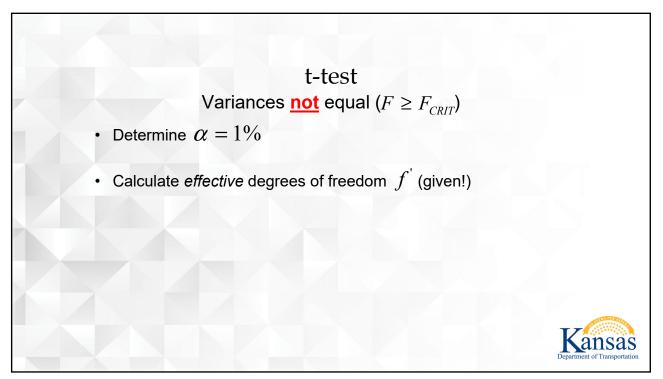


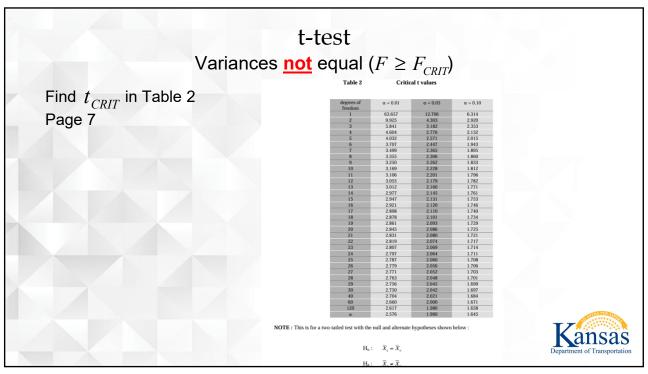


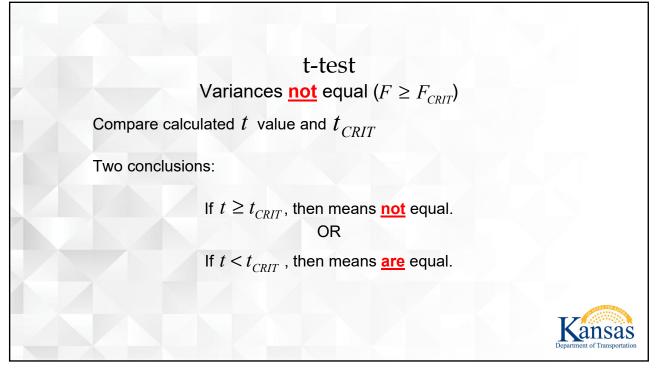

Example Problem – Case 1 Determining the t-statistic <u>KDOT</u> Contractor F = 1.34 $s_p^2 = 7.858$ $n_{c} = 21$ $n_{v} = 5$ $\bar{x}_c = 37.302$ $\bar{x_v} = 33.300$ $F_{CRIT} = 5.17$ t = 2.869 $s_c = 2.736$ $s_v = 3.161$ $F < F_{CRIT}$ $s_v^2 = 9.992$ $s_c^2 = 7.431$ $df_{den} = 20$ $df_{num} = 4$ Calculate critical t-value, tcrit Pooled Degrees of Freedom = $n_c + n_v - 2 = 21 + 5 - 2 = 24$ $\alpha = 1\%$ Enter Table 2 with the Pooled Degrees of Freedom and α ansas

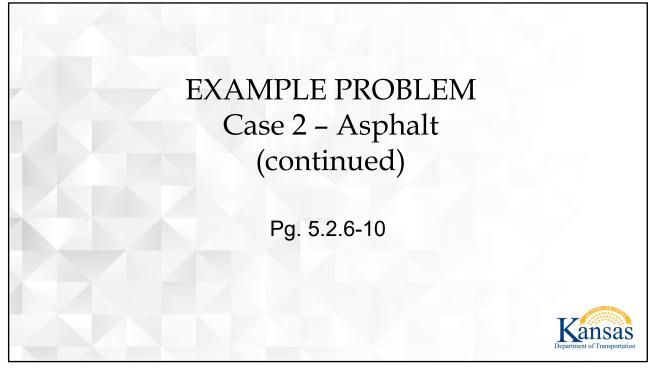


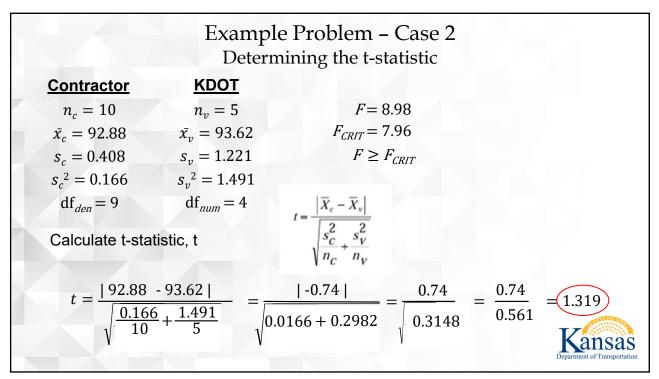


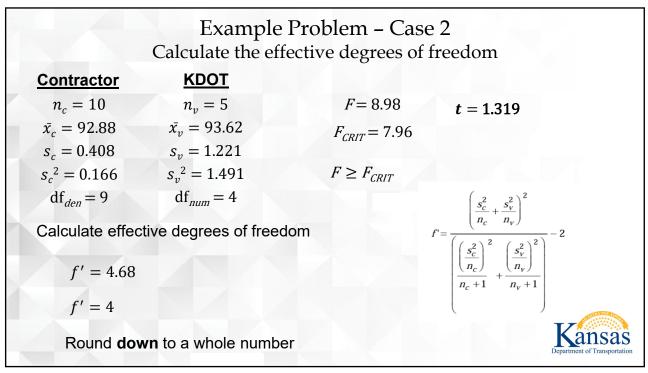


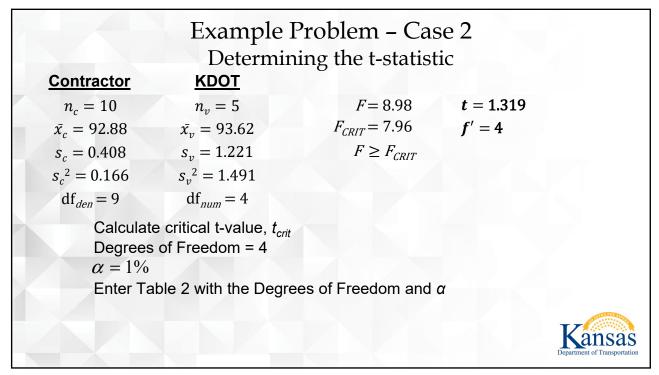


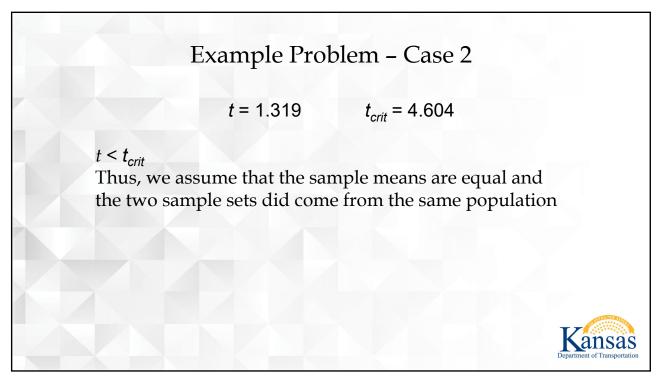


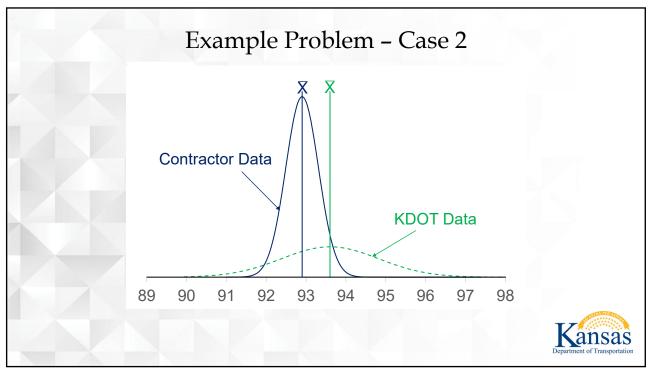


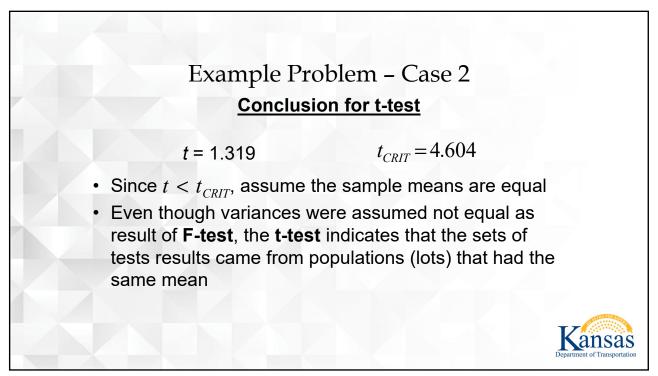


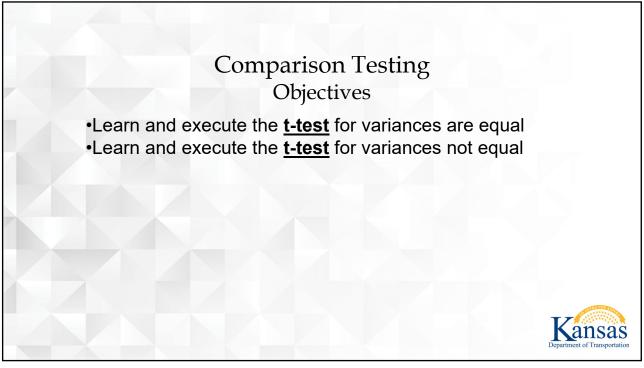


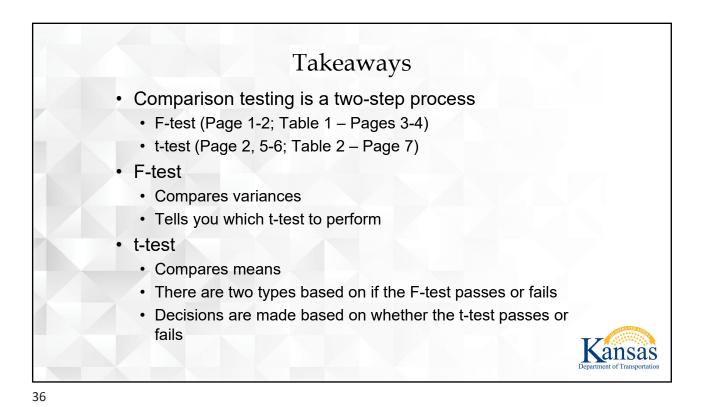






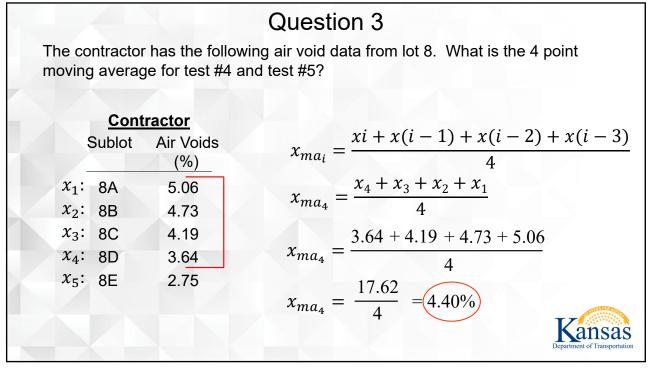





	t_{C}			
	^{<i>v</i>} C	RIT		
degrees of freedom	α = 0.01	α = 0.05	α = 0.10	
1	63.657	12.706	6.314	
2	9.925	4.303	2.920	
3	5.841	3.182	2.353	
4	4.604	2.776	2.132	
5	4.032	2.571	2.015	
6	3.707	2.447	1.943	
7	3.499	2.365	1.895	
8	3.355	2.306	1.860	
9	3.250	2.262	1.833	
10	3.169	2.228	1.812	
11	3.106	2.201	1.796	
12	3.055	2.179	1.782	
13	3.012	2.160	1.771	
13	2.977	2.145	1.761	
14	2.947	2.131	1.753	
15	2.921	2.120	1.746	
17	2.898	2.110	1.740	
17	2.898	2.101	1.740	
19	2.861	2.093	1.729	
20	2.861	2.086	1.725	
20	2.845	2.080	1.725	
21 22	2.831	2.080	1.721	
22	2.819	2.074	1.717	
24	2.797	2.064	1.711	
25	2.787	2.060	1.708	
26	2.779	2.056	1.706	
27	2.771	2.052	1.703	
28	2.763	2.048	1.701	
29	2.756	2.045	1.699	
30	2.750	2.042	1.697	K
40	2.704	2.021	1.684	
60	2.660	2.000	1.671	
120	2.617	1.980	1.658	Departme
00	2.576	1.960	1.645	Departme

	Question 1	
ontractor has tl ard deviation, a	e following air void data from lot nd variance?	8. What is the mean,
Cont	actor	
Sublot	Air Voids	
	(%)	
8A	5.06	
8B	4.73	
8C	4.19	
8D	3.64	
8E	2.75	
		Kansas Department of Transportation

	C	uestion 1	
	ne following a and variance?	ir void data from lot 8.	What is the mean,
Cont	ractor		
Sublot	Air Voids		
	(%)	<i>n</i> = 5	
8A 8B	5.06 4.73	$\overline{X} = 4.07\%$	
8C 8D	4.19 3.64	S = 0.92%	
8E	2.75	$S^2 = 0.85\%$	
			Department of Transportation


(USL) is 5.	25% and t	he Lower S	Spec Limit (LSL) i	m lot 8. The Upper Spec Limit is 2.75%. What is the Lower eent Within Limits?
	Sublot 8A	r <u>actor</u> Air Voids (%) 5.06	n = 5 $\overline{X} = 4.07\%$ S = 0.92%	$Q_u = \frac{(USL - \bar{X})}{s}$ $Q_L = \frac{(\bar{X} - LSL)}{s}$
	8B 8C 8D 8E	4.73 4.19 3.64 2.75	$S^2 = 0.85\%$ LSL = 2.75%	$PWL = (PWL_U + PWL_L) - 100$
			USL = 5.25%	Kansas Department of Transportation

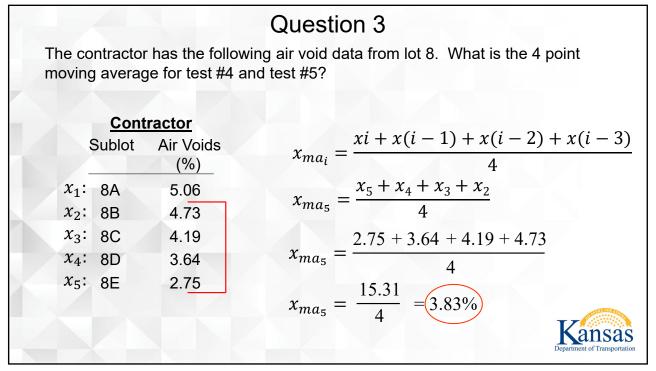
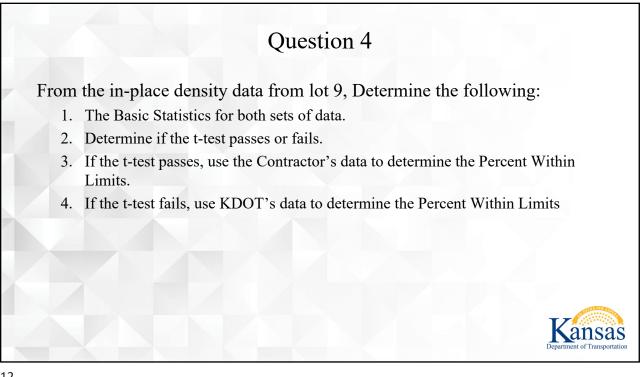
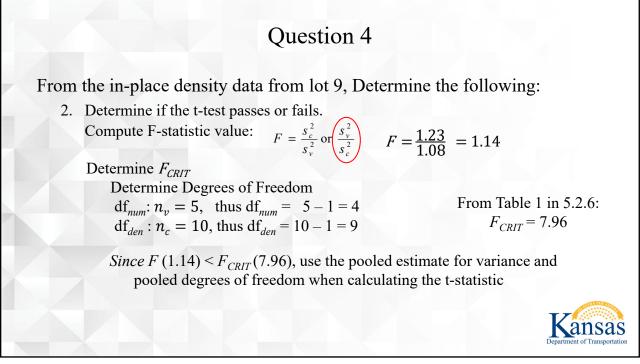
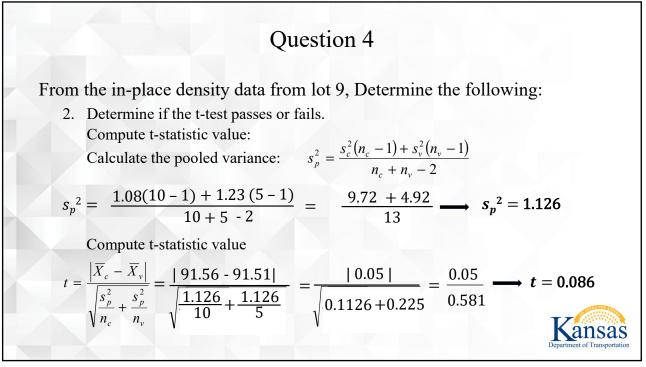

The contractor has the followin (USL) is 5.25% and the Lower Quality Index, Upper Quality In	Spec Limit (LSL) is 2	2.75%. What is the Lower
Contractor Sublot Air Voids (%) 8A 5.06 8B 4.73 8C 4.19 8D 3.64 8E 2.75	n = 5 $\overline{X} = 4.07\%$ S = 0.92% $S^2 = 0.85\%$ LSL = 2.75% USL = 5.25%	$Q_{u} = \frac{(5.25 - 4.07)}{0.92}$ $Q_{u} = \frac{(1.18)}{0.92} = 1.28$ $Q_{L} = \frac{(4.07 - 2.75)}{0.92}$ $Q_{L} = \frac{(1.32)}{0.92} = 1.43$ $E_{\text{L}} = \frac{(1.32)}{0.92} = 1.43$

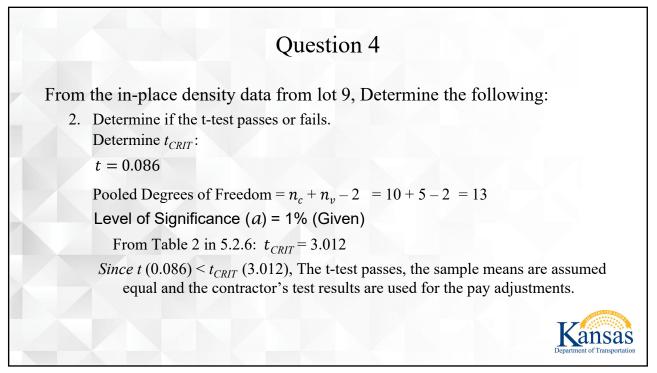
					Table	2 for Es					imits			
							5		n Proced					
						St	andard	Deviatio	n Metho	d				
	Quality													
	Index				Pe	rcent Wit	hin Limi	ts for Se	lected Sa	mple Siz	es			
	Q_U or Q_L	<u>N=3</u>	N=4	<u>N=5</u>	<u>N=6</u>	<u>N=7</u>	<u>N=8</u>	<u>N=9</u>	<u>N=10</u>	<u>N=15</u>	<u>N=20</u>	<u>N=30</u>	<u>N=50</u>	<u>N=100</u>
n=5				\square										
	1.18	100.00	89.33	88.71	88.53	88.44	88.39	88.35	88.32	88.25	88.21	88.18	88.15	88.12
$Q_U = 1.28$	1.19	100.00	89.67	88.98	88.77	88.67	88.61	88.57	88.54	88.46	88.42	88.38	88.35	88.32
	1.20	100.00	90.00	89.24	89.01	88.90	88.83	88.79	88.76	88.66	88.62	88.58	88.54	88.52
$PWL_{II} = 91.29$	1.21	100.00	90.33	89.50	89.25	89.13	89.06	89.00	88.97	88.87	88.82	88.78	88.74	88.71
U	1.22	100.00	90.67	89.77	89.49	89.35	89.27	89.22	89.18	89.07	89.02	88.97	88.93	88.91
	1.23	100.00	91.00	90.03	89.72	89.58	89.49	89.43	89.39	89.27	89.22	89.16	89.12	89.09
	1.24	100.00	91.33	90.28	89.96	89.80	89.70	89.64	89.59	89.47	89.41	89.36	89.31	89.28
	1.25	100.00	91.67	90.54	90.19	90.02	89.91	89.85	89.79	89.66	89.60	89.54	89.50	89.47
	1.26	100.00	92.00	90.79	90.42	90.23	90.12	90.05	90.00	89.85	89.79	89.73	89.68	89.65
	1.27	100.00	92.33	91.04	90.64	90.45	90.33	90.25	90.19	90.04	89.98	89.91	89.87	89.83
	1.28	100.00	92.67	91.29	90.87	90.66	90.53	90.45	90.39	90.23	90.16	90.10	90.05	90.01
	1.29	100.00	93.00	91.54	91.09	90.87	90.74	90.65	90.58	90.42	90.34	90.28	90.22	90.18
	1.30	100.00	93.33	91.79	91.31	91.07	90.94	90.84	90.78	90.60	90.52	90.45	90.40	90.36
	1.31	100.00	93.67	92.03	91.52	91.28	91.13	91.04	90.97	90.78	90.70	90.63	90.57	90.53
	1.32	100.00	94.00	92.27	91.74	91.48	91.33	91.23	91.15	90.96	90.88	90.80	90.74	90.70
	1.33	100.00	94.33	92.51	91.95	91.68	91.52	91.41	91.34	91.14	91.05	90.97	90.91	90.87
	1.34	100.00	94.67	92.75	92.16	91.88	91.71	91.60	91.52	91.31	91.22	91.14	91.08	91.03

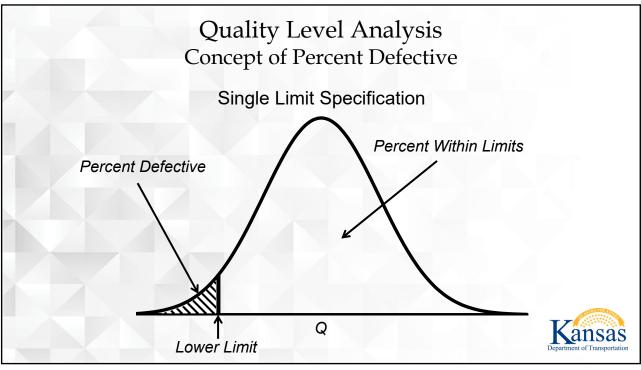
					Table		timation ability U andard 1	Jnknown	n Proced	ure	imits			
	Quality Index				Per	cent Wit	hin Limi	ts for Sel	lected Sa	mple Siz	es			
n = 5	Q_U or Q_L	<u>N=3</u>	<u>N=4</u>	N=5	<u>N=6</u>	<u>N=7</u>	<u>N=8</u>	<u>N=9</u>	<u>N=10</u>	<u>N=15</u>	<u>N=20</u>	<u>N=30</u>	<u>N=50</u>	<u>N=100</u>
0 1 1 2	1.35	100.00	95.00	92.98	92.37	92.08	91.90	91.78	91.70	91.48	91.39	91.31	91.24	91.19
$Q_L = 1.43$	1.36	100.00	95.33	93.21	92.58	92.27	92.09	91.96	91.88	91.65	91.56	91.47	91.40	91.35
	1.37	100.00	95.67	93.44	92.78	92.46	92.27	92.14	92.05	91.82	91.72	91.63	91.56	91.51
$PWL_{L} = 94.77$	1.38	100.00	96.00	93.67	92.98	92.65	92.45	92.32	92.23	91.99	91.88	91.79	91.72	91.67
L	1.39	100.00	96.33	93.90	93.18	92.83	92.63	92.49	92.40	92.15	92.04	91.95	91.88	91.82
	1.40	100.00	96.67	94.12	93.37	93.02	92.81	92.67	92.56	92.31	92.20	92.10	92.03	91.98
	1.41	100.00	97.00	94.34	93.57	93.20	92.98	92.83	92.73	92.47	92.36	92.26	92.18	92.13
	1.42	100.00	97.33	94.56	93.76	93.38	93.15	93.00	92.90	92.63	92.51	92.41	92.33	92.27
	1.43	100.00	97.67	94.77	93.95	93.55	93.32	93.17	93.06	92.78	92.66	92.56	92.48	92.42
	1.44	100.00	98.00	94.98	94.13	93.73	93.49	93.33	93.22	92.93	92.81	92.70	92.62	92.56
	1.45	100.00	98.33	95.19	94.32	93.90	93.65	93.49	93.37	93.08	92.96	92.85	92.76	92.70
	1.46	100.00	98.67	95.40	94.50	94.07	93.81	93.65	93.53	93.23	93.10	92.99	92.90	92.84
	1.47	100.00	99.00	95.61	94.67	94.23	93.97	93.80	93.68	93.37	93.25	93.13	93.04	92.98
	1.48	100.00	99.33	95.81	94.85	94.40	94.13	93.96	93.83	93.52	93.39	93.27	93.18	93.12
	1.49	100.00	99.67	96.01	95.02	94.56	94.29	94.11	93.98	93.66	93.52	93.40	93.31	93.25
	1.50	100.00	100.00	96.20	95.19	94.72	94.44	94.26	94.13	93.80	93.66	93.54	93.45	93.38
	1.51	100.00	100.00	96.39	95.36	94.87	94.59	94.40	94.27	93.94	93.80	93.67	93.58	93.51
	1.52	100.00	100.00	96.58	95.53	95.03	94.74	94.55	94.41	94.07	93.93	93.80	93.71	93.64
	1.53	100.00	100.00	96.77	95.69	95.18	94.88	94.69	94.55	94.20	94.06	93.93	93.83	93.76


5.4L			Question 2	
(USL)	is 5.25% a	and the Low	ving air void data fr er Spec Limit (LSL)	om lot 8. The Upper Spec Limit) is 2.75%. What is the Lower rcent Within Limits?
	Cont	ractor	n = 5	$Q_u = 1.28$
	Sublot	Air Voids (%)	X = 4.07%	$Q_L = 1.43$
	8A	5.06	S = 0.92%	$PWL = (PWL_U + PWL_L) - 100$
	8B 8C	4.73 4.19	$S^2 = 0.85\%$	<i>PWL</i> = (91.29 + 94.77) - 100
	8D 8E	3.64 2.75	LSL = 2.75%	<i>PWL</i> = (186.06) - 100
	OL	2.15	USL = 5.25%	<i>PWL</i> = 86.06
				Kansas Department of Transportation




Question 4 The following in-place density data has been calculated from two different sets of test results from lot 9. The first set is from the contractor quality control tests and the second set of data is from KDOT verification tests. The Lower Specification Limit is 91.00%. Use a level of significance (a) = 1%.


Con	tractor	K	DOT	
Sublot	Density (%G _{mm})	Sublot	Density (%G _{mm})	
9A1	92.10	9A	91.84	
9A2	93.33	9B	92.66	
9B1	90.72	9C	91.87	
9B2	91.15	9D	89.68	
9C1	92.27	9E	91.49	
9C2	92.23			
9D1	89.51			
9D2	91.15			STREET, ST
9E1	91.84			Kansas
9E2	91.27			Department of Transportation



		Ques	stion 4		
1. 1	The Basic Sta	density data from a tistics for both sets of			U
<u>Co</u> Sublot	ntractor Density (%G _{mm})			<u>r</u> Sublot	<u>XDOT</u> Density (%G _{mm})
9A1 9A2 9B1 9B2 9C1 9C2	92.10 93.33 90.72 91.15 92.27 92.23	$n_c = 10$ $\bar{x}_c = 91.56$ $s_c = 1.04$ $s_c^2 = 1.08$	$n_v = 5$ $\bar{x_v} = 91.51$ $s_v = 1.11$ $s_v^2 = 1.23$	9A 9B 9C 9D 9E	91.84 92.66 91.87 89.68 91.49
9D1 9D2 9E1 9E2	89.51 91.15 91.84 91.27				Kar

From the in-place density data from lot 9, Determine the following: 3. If the t-test passes, use the Contractor's data to determine the Percent Within Limits. Using the contractor's data we have: $\bar{x} = 91.56\%$ S = 1.04% n = 10 LSL = 91.00% (Given) $Q_L = \frac{(\bar{X} - LSL)}{S}$ $Q_L = \frac{(91.56 - 91.00)}{1.04} = \frac{(0.56)}{1.04} \longrightarrow Q_L = 0.54$ Enter Table 2 in 5.2.1 with $Q_L = 0.54$ and $n = 10 \longrightarrow PWL_L = 70.02\%$

Question 4

From the in-place density data from lot 9, Determine the following:

- 1. The Basic Statistics for both sets of data.
- 2. Determine if the t-test passes or fails.
- 3. If the t-test passes, use the Contractor's data to determine the Percent Within Limits.
- 4. If the t-test fails, use KDOT's data to determine the Percent Within Limits

